Cargando…
Evolutionary binary feature selection using adaptive ebola optimization search algorithm for high-dimensional datasets
Feature selection problem represents the field of study that requires approximate algorithms to identify discriminative and optimally combined features. The evaluation and suitability of these selected features are often analyzed using classifiers. These features are locked with data increasingly be...
Autores principales: | Oyelade, Olaide N., Agushaka, Jeffrey O., Ezugwu, Absalom E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022820/ https://www.ncbi.nlm.nih.gov/pubmed/36930670 http://dx.doi.org/10.1371/journal.pone.0282812 |
Ejemplares similares
-
A hybrid binary dwarf mongoose optimization algorithm with simulated annealing for feature selection on high dimensional multi-class datasets
por: Akinola, Olatunji A., et al.
Publicado: (2022) -
Immunity-based Ebola optimization search algorithm for minimization of feature extraction with reduction in digital mammography using CNN models
por: Oyelade, Olaide N., et al.
Publicado: (2022) -
Automatic detection and classification of lung cancer CT scans based on deep learning and ebola optimization search algorithm
por: Mohamed, Tehnan I. A., et al.
Publicado: (2023) -
Binary dwarf mongoose optimizer for solving high-dimensional feature selection problems
por: Akinola, Olatunji A., et al.
Publicado: (2022) -
Advanced dwarf mongoose optimization for solving CEC 2011 and CEC 2017 benchmark problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022)