Cargando…
Targeting tumor heterogeneity: multiplex-detection-based multiple instance learning for whole slide image classification
MOTIVATION: Multiple instance learning (MIL) is a powerful technique to classify whole slide images (WSIs) for diagnostic pathology. The key challenge of MIL on WSI classification is to discover the critical instances that trigger the bag label. However, tumor heterogeneity significantly hinders the...
Autores principales: | Wang, Zhikang, Bi, Yue, Pan, Tong, Wang, Xiaoyu, Bain, Chris, Bassed, Richard, Imoto, Seiya, Yao, Jianhua, Daly, Roger J, Song, Jiangning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023223/ https://www.ncbi.nlm.nih.gov/pubmed/36864612 http://dx.doi.org/10.1093/bioinformatics/btad114 |
Ejemplares similares
-
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
por: Wang, Zhenzhen, et al.
Publicado: (2022) -
Multiple-instance-learning-based detection of coeliac disease in histological whole-slide images
por: Denholm, J., et al.
Publicado: (2022) -
Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
por: Tavolara, Thomas E., et al.
Publicado: (2022) -
Attention2majority: Weak multiple instance learning for regenerative kidney grading on whole slide images
por: Su, Ziyu, et al.
Publicado: (2022) -
Nanopore basecalling from a perspective of instance segmentation
por: Zhang, Yao-zhong, et al.
Publicado: (2020)