Cargando…
Deep Encrypted Traffic Detection: An Anomaly Detection Framework for Encryption Traffic Based on Parallel Automatic Feature Extraction
With an increasing number of network attacks using encrypted communication, the anomaly detection of encryption traffic is of great importance to ensure reliable network operation. However, the existing feature extraction methods for encrypted traffic anomaly detection have difficulties in extractin...
Autores principales: | Long, Gang, Zhang, Zhaoxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023228/ https://www.ncbi.nlm.nih.gov/pubmed/36936668 http://dx.doi.org/10.1155/2023/3316642 |
Ejemplares similares
-
Deep Learning for Encrypted Traffic Classification and Unknown Data Detection
por: Pathmaperuma, Madushi H., et al.
Publicado: (2022) -
Acceleration of Intrusion Detection in Encrypted Network Traffic Using Heterogeneous Hardware †
por: Papadogiannaki, Eva, et al.
Publicado: (2021) -
Detecting IoT User Behavior and Sensitive Information in Encrypted IoT-App Traffic
por: Subahi, Alanoud, et al.
Publicado: (2019) -
Encrypted Web traffic dataset: Event logs and packet traces
por: Špaček, Stanislav, et al.
Publicado: (2022) -
A novel dataset for encrypted virtual private network traffic analysis
por: Naas, Mohamed, et al.
Publicado: (2023)