Cargando…

Closed-set automatic speaker identification using multi-scale recurrent networks in non-native children

Children may benefit from automatic speaker identification in a variety of applications, including child security, safety, and education. The key focus of this study is to develop a closed-set child speaker identification system for non-native speakers of English in both text-dependent and text-inde...

Descripción completa

Detalles Bibliográficos
Autores principales: Radha, Kodali, Bansal, Mohan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023307/
https://www.ncbi.nlm.nih.gov/pubmed/37056796
http://dx.doi.org/10.1007/s41870-023-01224-8
Descripción
Sumario:Children may benefit from automatic speaker identification in a variety of applications, including child security, safety, and education. The key focus of this study is to develop a closed-set child speaker identification system for non-native speakers of English in both text-dependent and text-independent speech tasks in order to track how the speaker’s fluency affects the system. The multi-scale wavelet scattering transform is used to compensate for concerns like the loss of high-frequency information caused by the most widely used mel frequency cepstral coefficients feature extractor. The proposed large-scale speaker identification system succeeds well by employing wavelet scattered Bi-LSTM. While this procedure is used to identify non-native children in multiple classes, average values of accuracy, precision, recall, and F-measure are being used to assess the performance of the model in text-independent and text-dependent tasks, which outperforms the existing models.