Cargando…

High-resolution livestock seasonal distribution data on the Qinghai-Tibet Plateau in 2020

Incorporating seasonality into livestock spatial distribution is of great significance for studying the complex system interaction between climate, vegetation, water, and herder activities, associated with livestock. The Qinghai-Tibet Plateau (QTP) has the world’s most elevated pastoral area and is...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhan, Ning, Liu, Weihang, Ye, Tao, Li, Hongda, Chen, Shuo, Ma, Heng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023705/
https://www.ncbi.nlm.nih.gov/pubmed/36932126
http://dx.doi.org/10.1038/s41597-023-02050-0
Descripción
Sumario:Incorporating seasonality into livestock spatial distribution is of great significance for studying the complex system interaction between climate, vegetation, water, and herder activities, associated with livestock. The Qinghai-Tibet Plateau (QTP) has the world’s most elevated pastoral area and is a hot spot for global environmental change. This study provides the spatial distribution of cattle, sheep, and livestock grazing on the warm-season and cold-season pastures at a 15 arc-second spatial resolution on the QTP. Warm/cold-season pastures were delineated by identifying the key elements that affect the seasonal distribution of grazing and combining the random forest classification model, and the average area under the receiver operating characteristic curve of the model is 0.98. Spatial disaggregation weights were derived using the prediction from a random forest model that linked county-level census livestock numbers to topography, climate, vegetation, and socioeconomic predictors. The coefficients of determination of external cross-scale validations between dasymetric mapping results and township census data range from 0.52 to 0.70. The data could provide important information for further modeling of human-environment interaction under climate change for this region.