Cargando…
Development of a Machine Learning Model to Estimate US Firearm Homicides in Near Real Time
IMPORTANCE: Firearm homicides are a major public health concern; lack of timely mortality data presents considerable challenges to effective response. Near real-time data sources offer potential for more timely estimation of firearm homicides. OBJECTIVE: To estimate near real-time burden of weekly a...
Autores principales: | Swedo, Elizabeth A., Alic, Alen, Law, Royal K., Sumner, Steven A., Chen, May S., Zwald, Marissa L., Van Dyke, Miriam E., Bowen, Daniel A., Mercy, James A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024196/ https://www.ncbi.nlm.nih.gov/pubmed/36930150 http://dx.doi.org/10.1001/jamanetworkopen.2023.3413 |
Ejemplares similares
-
Notes from the Field: Increases in Firearm Homicide and Suicide Rates — United States, 2020–2021
por: Simon, Thomas R., et al.
Publicado: (2022) -
Vital Signs: Changes in Firearm Homicide and Suicide Rates — United States, 2019–2020
por: Kegler, Scott R., et al.
Publicado: (2022) -
Development of a Machine Learning Model Using Multiple, Heterogeneous Data Sources to Estimate Weekly US Suicide Fatalities
por: Choi, Daejin, et al.
Publicado: (2020) -
Analysis of “Stand Your Ground” Self-defense Laws and Statewide Rates of Homicides and Firearm Homicides
por: Degli Esposti, Michelle, et al.
Publicado: (2022) -
County-Level Social Vulnerability and Emergency Department Visits for Firearm Injuries — 10 U.S. Jurisdictions, January 1, 2018–December 31, 2021
por: Van Dyke, Miriam E., et al.
Publicado: (2022)