Cargando…

Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children

IMPORTANCE: Early detection of attention-deficit/hyperactivity disorder (ADHD) and sleep problems is paramount for children’s mental health. Interview-based diagnostic approaches have drawbacks, necessitating the development of an evaluation method that uses digital phenotypes in daily life. OBJECTI...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Won-Pyo, Kim, Hyun-Jin, Pack, Seung Pil, Lim, Jae-Hyun, Cho, Chul-Hyun, Lee, Heon-Jeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Association 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024208/
https://www.ncbi.nlm.nih.gov/pubmed/36930149
http://dx.doi.org/10.1001/jamanetworkopen.2023.3502
_version_ 1784909055698927616
author Kim, Won-Pyo
Kim, Hyun-Jin
Pack, Seung Pil
Lim, Jae-Hyun
Cho, Chul-Hyun
Lee, Heon-Jeong
author_facet Kim, Won-Pyo
Kim, Hyun-Jin
Pack, Seung Pil
Lim, Jae-Hyun
Cho, Chul-Hyun
Lee, Heon-Jeong
author_sort Kim, Won-Pyo
collection PubMed
description IMPORTANCE: Early detection of attention-deficit/hyperactivity disorder (ADHD) and sleep problems is paramount for children’s mental health. Interview-based diagnostic approaches have drawbacks, necessitating the development of an evaluation method that uses digital phenotypes in daily life. OBJECTIVE: To evaluate the predictive performance of machine learning (ML) models by setting the data obtained from personal digital devices comprising training features (ie, wearable data) and diagnostic results of ADHD and sleep problems by the Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version for Diagnostic and Statistical Manual of Mental Disorders, 5th edition (K-SADS) as a prediction class from the Adolescent Brain Cognitive Development (ABCD) study. DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic study, wearable data and K-SADS data were collected at 21 sites in the US in the ABCD study (release 3.0, November 2, 2020, analyzed October 11, 2021). Screening data from 6571 patients and 21 days of wearable data from 5725 patients collected at the 2-year follow-up were used, and circadian rhythm–based features were generated for each participant. A total of 12 348 wearable data for ADHD and 39 160 for sleep problems were merged for developing ML models. MAIN OUTCOMES AND MEASURES: The average performance of the ML models was measured using an area under the receiver operating characteristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In addition, the Shapley Additive Explanations value was used to calculate the importance of features. RESULTS: The final population consisted of 79 children with ADHD problems (mean [SD] age, 144.5 [8.1] months; 55 [69.6%] males) vs 1011 controls and 68 with sleep problems (mean [SD] age, 143.5 [7.5] months; 38 [55.9%] males) vs 3346 controls. The ML models showed reasonable predictive performance for ADHD (AUC, 0.798; sensitivity, 0.756; specificity, 0.716; PPV, 0.159; and NPV, 0.976) and sleep problems (AUC, 0.737; sensitivity, 0.743; specificity, 0.632; PPV, 0.036; and NPV, 0.992). CONCLUSIONS AND RELEVANCE: In this diagnostic study, an ML method for early detection or screening using digital phenotypes in children’s daily lives was developed. The results support facilitating early detection in children; however, additional follow-up studies can improve its performance.
format Online
Article
Text
id pubmed-10024208
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Medical Association
record_format MEDLINE/PubMed
spelling pubmed-100242082023-03-19 Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children Kim, Won-Pyo Kim, Hyun-Jin Pack, Seung Pil Lim, Jae-Hyun Cho, Chul-Hyun Lee, Heon-Jeong JAMA Netw Open Original Investigation IMPORTANCE: Early detection of attention-deficit/hyperactivity disorder (ADHD) and sleep problems is paramount for children’s mental health. Interview-based diagnostic approaches have drawbacks, necessitating the development of an evaluation method that uses digital phenotypes in daily life. OBJECTIVE: To evaluate the predictive performance of machine learning (ML) models by setting the data obtained from personal digital devices comprising training features (ie, wearable data) and diagnostic results of ADHD and sleep problems by the Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version for Diagnostic and Statistical Manual of Mental Disorders, 5th edition (K-SADS) as a prediction class from the Adolescent Brain Cognitive Development (ABCD) study. DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic study, wearable data and K-SADS data were collected at 21 sites in the US in the ABCD study (release 3.0, November 2, 2020, analyzed October 11, 2021). Screening data from 6571 patients and 21 days of wearable data from 5725 patients collected at the 2-year follow-up were used, and circadian rhythm–based features were generated for each participant. A total of 12 348 wearable data for ADHD and 39 160 for sleep problems were merged for developing ML models. MAIN OUTCOMES AND MEASURES: The average performance of the ML models was measured using an area under the receiver operating characteristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In addition, the Shapley Additive Explanations value was used to calculate the importance of features. RESULTS: The final population consisted of 79 children with ADHD problems (mean [SD] age, 144.5 [8.1] months; 55 [69.6%] males) vs 1011 controls and 68 with sleep problems (mean [SD] age, 143.5 [7.5] months; 38 [55.9%] males) vs 3346 controls. The ML models showed reasonable predictive performance for ADHD (AUC, 0.798; sensitivity, 0.756; specificity, 0.716; PPV, 0.159; and NPV, 0.976) and sleep problems (AUC, 0.737; sensitivity, 0.743; specificity, 0.632; PPV, 0.036; and NPV, 0.992). CONCLUSIONS AND RELEVANCE: In this diagnostic study, an ML method for early detection or screening using digital phenotypes in children’s daily lives was developed. The results support facilitating early detection in children; however, additional follow-up studies can improve its performance. American Medical Association 2023-03-17 /pmc/articles/PMC10024208/ /pubmed/36930149 http://dx.doi.org/10.1001/jamanetworkopen.2023.3502 Text en Copyright 2023 Kim WP et al. JAMA Network Open. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the CC-BY License.
spellingShingle Original Investigation
Kim, Won-Pyo
Kim, Hyun-Jin
Pack, Seung Pil
Lim, Jae-Hyun
Cho, Chul-Hyun
Lee, Heon-Jeong
Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children
title Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children
title_full Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children
title_fullStr Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children
title_full_unstemmed Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children
title_short Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children
title_sort machine learning–based prediction of attention-deficit/hyperactivity disorder and sleep problems with wearable data in children
topic Original Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024208/
https://www.ncbi.nlm.nih.gov/pubmed/36930149
http://dx.doi.org/10.1001/jamanetworkopen.2023.3502
work_keys_str_mv AT kimwonpyo machinelearningbasedpredictionofattentiondeficithyperactivitydisorderandsleepproblemswithwearabledatainchildren
AT kimhyunjin machinelearningbasedpredictionofattentiondeficithyperactivitydisorderandsleepproblemswithwearabledatainchildren
AT packseungpil machinelearningbasedpredictionofattentiondeficithyperactivitydisorderandsleepproblemswithwearabledatainchildren
AT limjaehyun machinelearningbasedpredictionofattentiondeficithyperactivitydisorderandsleepproblemswithwearabledatainchildren
AT chochulhyun machinelearningbasedpredictionofattentiondeficithyperactivitydisorderandsleepproblemswithwearabledatainchildren
AT leeheonjeong machinelearningbasedpredictionofattentiondeficithyperactivitydisorderandsleepproblemswithwearabledatainchildren