Cargando…

Mesoporous Pt@Pt-skin Pt(3)Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction

The design of Pt-based nanoarchitectures with controllable compositions and morphologies is necessary to enhance their electrocatalytic activity. Herein, we report a rational design and synthesis of anisotropic mesoporous Pt@Pt-skin Pt(3)Ni core-shell framework nanowires for high-efficient electroca...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Hui, Xu, Zhewei, Hu, Zhi-Yi, Yin, Zhiwen, Wang, Zhao, Deng, Zhao, Wei, Ping, Feng, Shihao, Dong, Shunhong, Liu, Jinfeng, Luo, Sicheng, Qiu, Zhaodong, Zhou, Liang, Mai, Liqiang, Su, Bao-Lian, Zhao, Dongyuan, Liu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024750/
https://www.ncbi.nlm.nih.gov/pubmed/36934107
http://dx.doi.org/10.1038/s41467-023-37268-4
Descripción
Sumario:The design of Pt-based nanoarchitectures with controllable compositions and morphologies is necessary to enhance their electrocatalytic activity. Herein, we report a rational design and synthesis of anisotropic mesoporous Pt@Pt-skin Pt(3)Ni core-shell framework nanowires for high-efficient electrocatalysis. The catalyst has a uniform core-shell structure with an ultrathin atomic-jagged Pt nanowire core and a mesoporous Pt-skin Pt(3)Ni framework shell, possessing high electrocatalytic activity, stability and Pt utilisation efficiency. For the oxygen reduction reaction, the anisotropic mesoporous Pt@Pt-skin Pt(3)Ni core-shell framework nanowires demonstrated exceptional mass and specific activities of 6.69 A/mg(pt) and 8.42 mA/cm(2) (at 0.9 V versus reversible hydrogen electrode), and the catalyst exhibited high stability with negligible activity decay after 50,000 cycles. The mesoporous Pt@Pt-skin Pt(3)Ni core-shell framework nanowire configuration combines the advantages of three-dimensional open mesopore molecular accessibility and compressive Pt-skin surface strains, which results in more catalytically active sites and weakened chemisorption of oxygenated species, thus boosting its catalytic activity and stability towards electrocatalysis.