Cargando…
Prediction of orthognathic surgery plan from 3D cephalometric analysis via deep learning
BACKGROUND: Preoperative planning of orthognathic surgery is indispensable for achieving ideal surgical outcome regarding the occlusion and jaws' position. However, orthognathic surgery planning is sophisticated and highly experience-dependent, which requires comprehensive consideration of faci...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024836/ https://www.ncbi.nlm.nih.gov/pubmed/36934241 http://dx.doi.org/10.1186/s12903-023-02844-z |
Sumario: | BACKGROUND: Preoperative planning of orthognathic surgery is indispensable for achieving ideal surgical outcome regarding the occlusion and jaws' position. However, orthognathic surgery planning is sophisticated and highly experience-dependent, which requires comprehensive consideration of facial morphology and occlusal function. This study aimed to investigate a robust and automatic method based on deep learning to predict reposition vectors of jawbones in orthognathic surgery plan. METHODS: A regression neural network named VSP transformer was developed based on Transformer architecture. Firstly, 3D cephalometric analysis was employed to quantify skeletal-facial morphology as input features. Next, input features were weighted using pretrained results to minimize bias resulted from multicollinearity. Through encoder-decoder blocks, ten landmark-based reposition vectors of jawbones were predicted. Permutation importance (PI) method was used to calculate contributions of each feature to final prediction to reveal interpretability of the proposed model. RESULTS: VSP transformer model was developed with 383 samples and clinically tested with 49 prospectively collected samples. Our proposed model outperformed other four classic regression models in prediction accuracy. Mean absolute errors (MAE) of prediction were 1.41 mm in validation set and 1.34 mm in clinical test set. The interpretability results of the model were highly consistent with clinical knowledge and experience. CONCLUSIONS: The developed model can predict reposition vectors of orthognathic surgery plan with high accuracy and good clinically practical-effectiveness. Moreover, the model was proved reliable because of its good interpretability. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12903-023-02844-z. |
---|