Cargando…
Exploring the essence of compound fault diagnosis: A novel multi-label domain adaptation method and its application to bearings
Compound fault diagnosis in essence is a fundamental but difficult problem to be solved. The separation and extraction of compound fault features remain great challenges in industrial applications due to the lack of labeled fault data. This paper proposes a novel multi-label domain adaptation method...
Autores principales: | Chu, Liuxing, Li, Qi, Yang, Bingru, Chen, Liang, Shen, Changqing, Wang, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025141/ https://www.ncbi.nlm.nih.gov/pubmed/36950628 http://dx.doi.org/10.1016/j.heliyon.2023.e14545 |
Ejemplares similares
-
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022) -
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
One-Dimensional Multi-Scale Domain Adaptive Network for Bearing-Fault Diagnosis under Varying Working Conditions
por: Wang, Kai, et al.
Publicado: (2020) -
Fault Diagnosis Method of Roadheader Bearing Based on VMD and Domain Adaptive Transfer Learning
por: Qu, Xiaofei, et al.
Publicado: (2023)