Cargando…
AD-Syn-Net: systematic identification of Alzheimer’s disease-associated mutation and co-mutation vulnerabilities via deep learning
Alzheimer’s disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible for the occurrence of the disease. Although pre...
Autores principales: | Pan, Xingxin, Coban Akdemir, Zeynep H, Gao, Ruixuan, Jiang, Xiaoqian, Sheynkman, Gloria M, Wu, Erxi, Huang, Jason H, Sahni, Nidhi, Yi, S Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025433/ https://www.ncbi.nlm.nih.gov/pubmed/36752347 http://dx.doi.org/10.1093/bib/bbad030 |
Ejemplares similares
-
PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein–protein interaction network
por: Wang, Xiaowen, et al.
Publicado: (2022) -
COSMIC Cancer Gene Census 3D database: understanding the impacts of mutations on cancer targets
por: Alsulami, Ali F, et al.
Publicado: (2021) -
Mutational signature assignment heterogeneity is widespread and can be addressed by ensemble approaches
por: Wu, Andy J, et al.
Publicado: (2023) -
Characterization on the oncogenic effect of the missense mutations of p53 via machine learning
por: Pan, Qisheng, et al.
Publicado: (2023) -
Revealing tumor heterogeneity of breast cancer by utilizing the linkage between somatic and germline mutations
por: Zou, Meng, et al.
Publicado: (2018)