Cargando…
SWEET: a single-sample network inference method for deciphering individual features in disease
Recently, extracting inherent biological system information (e.g. cellular networks) from genome-wide expression profiles for developing personalized diagnostic and therapeutic strategies has become increasingly important. However, accurately constructing single-sample networks (SINs) to capture ind...
Autores principales: | Chen, Hsin-Hua, Hsueh, Chun-Wei, Lee, Chia-Hwa, Hao, Ting-Yi, Tu, Tzu-Ying, Chang, Lan-Yun, Lee, Jih-Chin, Lin, Chun-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025435/ https://www.ncbi.nlm.nih.gov/pubmed/36719112 http://dx.doi.org/10.1093/bib/bbad032 |
Ejemplares similares
-
CellDrift: inferring perturbation responses in temporally sampled single-cell data
por: Jin, Kang, et al.
Publicado: (2022) -
Deciphering signatures of natural selection via deep learning
por: Qin, Xinghu, et al.
Publicado: (2022) -
FitDevo: accurate inference of single-cell developmental potential using sample-specific gene weight
por: Zhang, Feng, et al.
Publicado: (2022) -
spaCI: deciphering spatial cellular communications through adaptive graph model
por: Tang, Ziyang, et al.
Publicado: (2022) -
Interaction-based transcriptome analysis via differential network inference
por: Leng, Jiacheng, et al.
Publicado: (2022)