Cargando…
HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases
The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data rem...
Autores principales: | Kobets, Victoria A, Ulianov, Sergey V, Galitsyna, Aleksandra A, Doronin, Semen A, Mikhaleva, Elena A, Gelfand, Mikhail S, Shevelyov, Yuri Y, Razin, Sergey V, Khrameeva, Ekaterina E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025441/ https://www.ncbi.nlm.nih.gov/pubmed/36759336 http://dx.doi.org/10.1093/bib/bbad044 |
Ejemplares similares
-
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM
por: Liu, Tong, et al.
Publicado: (2023) -
scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
por: Zhu, Hao, et al.
Publicado: (2023) -
Perspectives for the reconstruction of 3D chromatin conformation using single cell Hi-C data
por: Kos, Pavel I., et al.
Publicado: (2021) -
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
por: Zheng, Jiahao, et al.
Publicado: (2023) -
Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data
por: Lu, Jingzhe, et al.
Publicado: (2021)