Cargando…
A review on longitudinal data analysis with random forest
In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistica...
Autores principales: | Hu, Jianchang, Szymczak, Silke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025446/ https://www.ncbi.nlm.nih.gov/pubmed/36653905 http://dx.doi.org/10.1093/bib/bbad002 |
Ejemplares similares
-
Evaluation of variable selection methods for random forests and omics data sets
por: Degenhardt, Frauke, et al.
Publicado: (2017) -
Integrating biological knowledge and gene expression data using pathway-guided random forests: a benchmarking study
por: Seifert, Stephan, et al.
Publicado: (2020) -
Surrogate minimal depth as an importance measure for variables in random forests
por: Seifert, Stephan, et al.
Publicado: (2019) -
Evaluation of single-nucleotide polymorphism imputation using random forests
por: Schwarz, Daniel F, et al.
Publicado: (2009) -
Picking single-nucleotide polymorphisms in forests
por: Schwarz, Daniel F, et al.
Publicado: (2007)