Cargando…
PLSDA-batch: a multivariate framework to correct for batch effects in microbiome data
Microbial communities are highly dynamic and sensitive to changes in the environment. Thus, microbiome data are highly susceptible to batch effects, defined as sources of unwanted variation that are not related to and obscure any factors of interest. Existing batch effect correction methods have bee...
Autores principales: | Wang, Yiwen, Lê Cao, Kim-Anh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025448/ https://www.ncbi.nlm.nih.gov/pubmed/36653900 http://dx.doi.org/10.1093/bib/bbac622 |
Ejemplares similares
-
Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids
por: Wang, Yu Mei, et al.
Publicado: (2023) -
Sincast: a computational framework to predict cell identities in single-cell transcriptomes using bulk atlases as references
por: Deng, Yidi, et al.
Publicado: (2022) -
CAFU: a Galaxy framework for exploring unmapped RNA-Seq data
por: Chen, Siyuan, et al.
Publicado: (2019) -
Integrating multi-omics summary data using a Mendelian randomization framework
por: Jin, Chong, et al.
Publicado: (2022) -
Comethyl: a network-based methylome approach to investigate the multivariate nature of health and disease
por: Mordaunt, Charles E, et al.
Publicado: (2022)