Cargando…
Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review
Single-cell RNA sequencing (scRNA-seq) has become a routinely used technique to quantify the gene expression profile of thousands of single cells simultaneously. Analysis of scRNA-seq data plays an important role in the study of cell states and phenotypes, and has helped elucidate biological process...
Autores principales: | Brendel, Matthew, Su, Chang, Bai, Zilong, Zhang, Hao, Elemento, Olivier, Wang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025684/ https://www.ncbi.nlm.nih.gov/pubmed/36528240 http://dx.doi.org/10.1016/j.gpb.2022.11.011 |
Ejemplares similares
-
Evaluation of deep learning-based feature selection for single-cell RNA sequencing data analysis
por: Huang, Hao, et al.
Publicado: (2023) -
deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors
por: Zou, Bin, et al.
Publicado: (2021) -
Application of Deep Learning Technology in Glioma
por: Hu, Guangdong, et al.
Publicado: (2022) -
DeepCCI: a deep learning framework for identifying cell–cell interactions from single-cell RNA sequencing data
por: Yang, Wenyi, et al.
Publicado: (2023) -
Use of RNA sequencing to evaluate rheumatic disease patients
por: Giannopoulou, Eugenia G, et al.
Publicado: (2015)