Cargando…
DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data
Identification of cancer driver genes plays an important role in precision oncology research, which is helpful to understand cancer initiation and progression. However, most existing computational methods mainly used the protein–protein interaction (PPI) networks, or treated the directed gene regula...
Autores principales: | Zhang, Shao-Wu, Xu, Jing-Yu, Zhang, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025764/ https://www.ncbi.nlm.nih.gov/pubmed/36464123 http://dx.doi.org/10.1016/j.gpb.2022.11.004 |
Ejemplares similares
-
SMGR: a joint statistical method for integrative analysis of single-cell multi-omics data
por: Song, Qianqian, et al.
Publicado: (2022) -
Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets
por: Argelaguet, Ricard, et al.
Publicado: (2018) -
INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants
por: Dong, Chenyang, et al.
Publicado: (2021) -
Tensorial blind source separation for improved analysis of multi-omic data
por: Teschendorff, Andrew E., et al.
Publicado: (2018) -
Extracellular dGMP Enhances Deinococcus radiodurans Tolerance to Oxidative Stress
por: Li, Mingfeng, et al.
Publicado: (2013)