Cargando…
How Does a Convolutional Neural Network Trained to Differentiate between Invasive Melanoma and Melanoma In situ Generalize when Assessing Dysplastic Naevi?
Autores principales: | GILLSTEDT, Martin, SEGERHOLM, Klara, MANNIUS, Ludwig, PAOLI, John, POLESIE, Sam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medical Journals Sweden, on behalf of the Society for Publication of Acta Dermato-Venereologica
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026012/ https://www.ncbi.nlm.nih.gov/pubmed/36916955 http://dx.doi.org/10.2340/actadv.v103.4822 |
Ejemplares similares
-
Evaluation of Melanoma Thickness with Clinical Close-up and Dermoscopic Images Using a Convolutional Neural Network
por: GILLSTEDT, Martin, et al.
Publicado: (2022) -
Ability to Predict Melanoma Within 5 Years Using Registry Data and a Convolutional Neural Network: A Proof of Concept Study
por: GILLSTEDT, Martin, et al.
Publicado: (2022) -
Discrimination Between Invasive and In Situ Melanomas Using Clinical Close-Up Images and a De Novo Convolutional Neural Network
por: Polesie, Sam, et al.
Publicado: (2021) -
Assessment of melanoma thickness based on dermoscopy images: an open, web‐based, international, diagnostic study
por: Polesie, S., et al.
Publicado: (2022) -
Can Dermoscopy Be Used to Predict if a Melanoma Is In Situ or Invasive?
por: Polesie, Sam, et al.
Publicado: (2021)