Cargando…
Refraction, beam splitting and dispersion of GHz surface acoustic waves by a phononic crystal
We exploit a time-resolved ultrafast optical technique to study the propagation of point-excited surface acoustic waves on a microscopic two-dimensional phononic crystal in the form of a square lattice of holes in a silicon substrate. Constant-frequency images and the dispersion relation are extract...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026032/ https://www.ncbi.nlm.nih.gov/pubmed/36950517 http://dx.doi.org/10.1016/j.pacs.2023.100471 |
Sumario: | We exploit a time-resolved ultrafast optical technique to study the propagation of point-excited surface acoustic waves on a microscopic two-dimensional phononic crystal in the form of a square lattice of holes in a silicon substrate. Constant-frequency images and the dispersion relation are extracted, and the latter measured in detail in the region around the phononic band gap. Mode conversion and refraction at the interface between the phononic crystal and surrounding non-structured silicon substrate is studied at constant frequencies. Symmetric phonon beam splitting, for example, is shown to lead to a striking Maltese-cross pattern when phonons exit a square region of phononic crystal excited near its center. |
---|