Cargando…

Superconductivity in Te-Deficient ZrTe(2)

[Image: see text] We present structural, electrical, and thermoelectric potential measurements on high-quality single crystals of ZrTe(1.8) grown from isothermal chemical vapor transport. These measurements show that the Te-deficient ZrTe(1.8), which forms the same structure as the nonsuperconductin...

Descripción completa

Detalles Bibliográficos
Autores principales: Correa, Lucas E., Ferreira, Pedro P., de Faria, Leandro R., Fim, Vitor M., da Luz, Mario S., Torikachvili, Milton S., Heil, Christoph, Eleno, Luiz T. F., Machado, Antonio J. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026068/
https://www.ncbi.nlm.nih.gov/pubmed/36960103
http://dx.doi.org/10.1021/acs.jpcc.2c08836
_version_ 1784909464928780288
author Correa, Lucas E.
Ferreira, Pedro P.
de Faria, Leandro R.
Fim, Vitor M.
da Luz, Mario S.
Torikachvili, Milton S.
Heil, Christoph
Eleno, Luiz T. F.
Machado, Antonio J. S.
author_facet Correa, Lucas E.
Ferreira, Pedro P.
de Faria, Leandro R.
Fim, Vitor M.
da Luz, Mario S.
Torikachvili, Milton S.
Heil, Christoph
Eleno, Luiz T. F.
Machado, Antonio J. S.
author_sort Correa, Lucas E.
collection PubMed
description [Image: see text] We present structural, electrical, and thermoelectric potential measurements on high-quality single crystals of ZrTe(1.8) grown from isothermal chemical vapor transport. These measurements show that the Te-deficient ZrTe(1.8), which forms the same structure as the nonsuperconducting ZrTe(2), is superconducting below 3.2 K. The temperature dependence of the upper critical field (H(c2)) deviates from the behavior expected in conventional single-band superconductors, being best described by an electron–phonon two-gap superconducting model with strong intraband coupling. For the ZrTe(1.8) single crystals, the Seebeck potential measurements suggest that the charge carriers are predominantly negative, in agreement with the ab initio calculations. Through first-principles calculations within DFT, we show that the slight reduction of Te occupancy in ZrTe(2) unexpectedly gives origin to density of states peaks at the Fermi level due to the formation of localized Zr-d bands, possibly promoting electronic instabilities at the Fermi level and an increase at the critical temperature according to the standard BCS theory. These findings highlight that the Te deficiency promotes the electronic conditions for the stability of the superconducting ground state, suggesting that defects can fine-tune the electronic structure to support superconductivity.
format Online
Article
Text
id pubmed-10026068
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-100260682023-03-21 Superconductivity in Te-Deficient ZrTe(2) Correa, Lucas E. Ferreira, Pedro P. de Faria, Leandro R. Fim, Vitor M. da Luz, Mario S. Torikachvili, Milton S. Heil, Christoph Eleno, Luiz T. F. Machado, Antonio J. S. J Phys Chem C Nanomater Interfaces [Image: see text] We present structural, electrical, and thermoelectric potential measurements on high-quality single crystals of ZrTe(1.8) grown from isothermal chemical vapor transport. These measurements show that the Te-deficient ZrTe(1.8), which forms the same structure as the nonsuperconducting ZrTe(2), is superconducting below 3.2 K. The temperature dependence of the upper critical field (H(c2)) deviates from the behavior expected in conventional single-band superconductors, being best described by an electron–phonon two-gap superconducting model with strong intraband coupling. For the ZrTe(1.8) single crystals, the Seebeck potential measurements suggest that the charge carriers are predominantly negative, in agreement with the ab initio calculations. Through first-principles calculations within DFT, we show that the slight reduction of Te occupancy in ZrTe(2) unexpectedly gives origin to density of states peaks at the Fermi level due to the formation of localized Zr-d bands, possibly promoting electronic instabilities at the Fermi level and an increase at the critical temperature according to the standard BCS theory. These findings highlight that the Te deficiency promotes the electronic conditions for the stability of the superconducting ground state, suggesting that defects can fine-tune the electronic structure to support superconductivity. American Chemical Society 2023-03-08 /pmc/articles/PMC10026068/ /pubmed/36960103 http://dx.doi.org/10.1021/acs.jpcc.2c08836 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Correa, Lucas E.
Ferreira, Pedro P.
de Faria, Leandro R.
Fim, Vitor M.
da Luz, Mario S.
Torikachvili, Milton S.
Heil, Christoph
Eleno, Luiz T. F.
Machado, Antonio J. S.
Superconductivity in Te-Deficient ZrTe(2)
title Superconductivity in Te-Deficient ZrTe(2)
title_full Superconductivity in Te-Deficient ZrTe(2)
title_fullStr Superconductivity in Te-Deficient ZrTe(2)
title_full_unstemmed Superconductivity in Te-Deficient ZrTe(2)
title_short Superconductivity in Te-Deficient ZrTe(2)
title_sort superconductivity in te-deficient zrte(2)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026068/
https://www.ncbi.nlm.nih.gov/pubmed/36960103
http://dx.doi.org/10.1021/acs.jpcc.2c08836
work_keys_str_mv AT correalucase superconductivityintedeficientzrte2
AT ferreirapedrop superconductivityintedeficientzrte2
AT defarialeandror superconductivityintedeficientzrte2
AT fimvitorm superconductivityintedeficientzrte2
AT daluzmarios superconductivityintedeficientzrte2
AT torikachvilimiltons superconductivityintedeficientzrte2
AT heilchristoph superconductivityintedeficientzrte2
AT elenoluiztf superconductivityintedeficientzrte2
AT machadoantoniojs superconductivityintedeficientzrte2