Cargando…
Machine Learning Full NMR Chemical Shift Tensors of Silicon Oxides with Equivariant Graph Neural Networks
[Image: see text] The nuclear magnetic resonance (NMR) chemical shift tensor is a highly sensitive probe of the electronic structure of an atom and furthermore its local structure. Recently, machine learning has been applied to NMR in the prediction of isotropic chemical shifts from a structure. Cur...
Autores principales: | Venetos, Maxwell C., Wen, Mingjian, Persson, Kristin A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026072/ https://www.ncbi.nlm.nih.gov/pubmed/36862997 http://dx.doi.org/10.1021/acs.jpca.2c07530 |
Ejemplares similares
-
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
por: Gong, Shiqi, et al.
Publicado: (2022) -
3D-equivariant graph neural networks for protein model quality assessment
por: Chen, Chen, et al.
Publicado: (2023) -
Modeling the Structure of Crystalline Alamethicin and Its NMR Chemical Shift Tensors
por: Czernek, Jiří, et al.
Publicado: (2021) -
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
por: Batzner, Simon, et al.
Publicado: (2022)