Cargando…
Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing
Quantitative detection of virus-like particles under a low concentration is of vital importance for early infection diagnosis and water pollution analysis. In this paper, a novel virus detection method is proposed using indirect polarization parametric imaging method combined with a plasmonic split-...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optica Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026587/ https://www.ncbi.nlm.nih.gov/pubmed/36950230 http://dx.doi.org/10.1364/BOE.483831 |
_version_ | 1784909567047499776 |
---|---|
author | Jin, Xiao Xue, Lu Ye, Shengwei Cheng, Weiqing Hou, Jamie Jiangmin Hou, Lianping Marsh, John H. Sun, Ming Liu, Xuefeng Xiong, Jichuan Ni, Bin |
author_facet | Jin, Xiao Xue, Lu Ye, Shengwei Cheng, Weiqing Hou, Jamie Jiangmin Hou, Lianping Marsh, John H. Sun, Ming Liu, Xuefeng Xiong, Jichuan Ni, Bin |
author_sort | Jin, Xiao |
collection | PubMed |
description | Quantitative detection of virus-like particles under a low concentration is of vital importance for early infection diagnosis and water pollution analysis. In this paper, a novel virus detection method is proposed using indirect polarization parametric imaging method combined with a plasmonic split-ring nanocavity array coated with an Au film and a quantitative algorithm is implemented based on the extended Laplace operator. The attachment of viruses to the split-ring cavity breaks the structural symmetry, and such asymmetry can be enhanced by depositing a thin gold film on the sample, which allows an asymmetrical plasmon mode with a large shift of resonance peak generated under transverse polarization. Correspondingly, the far-field scattering state distribution encoded by the attached virus exhibits a specific asymmetric pattern that is highly correlated to the structural feature of the virus. By utilizing the parametric image sinδ to collect information on the spatial photon state distribution and far-field asymmetry with a sub-wavelength resolution, the appearance of viruses can be detected. To further reduce the background noise and enhance the asymmetric signals, an extended Laplace operator method which divides the detection area into topological units and then calculates the asymmetric parameter is applied, enabling easier determination of virus appearance. Experimental results show that the developed method can provide a detection limit as low as 56 vp/150µL on a large scale, which has great potential in early virus screening and other applications. |
format | Online Article Text |
id | pubmed-10026587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Optica Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-100265872023-03-21 Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing Jin, Xiao Xue, Lu Ye, Shengwei Cheng, Weiqing Hou, Jamie Jiangmin Hou, Lianping Marsh, John H. Sun, Ming Liu, Xuefeng Xiong, Jichuan Ni, Bin Biomed Opt Express Article Quantitative detection of virus-like particles under a low concentration is of vital importance for early infection diagnosis and water pollution analysis. In this paper, a novel virus detection method is proposed using indirect polarization parametric imaging method combined with a plasmonic split-ring nanocavity array coated with an Au film and a quantitative algorithm is implemented based on the extended Laplace operator. The attachment of viruses to the split-ring cavity breaks the structural symmetry, and such asymmetry can be enhanced by depositing a thin gold film on the sample, which allows an asymmetrical plasmon mode with a large shift of resonance peak generated under transverse polarization. Correspondingly, the far-field scattering state distribution encoded by the attached virus exhibits a specific asymmetric pattern that is highly correlated to the structural feature of the virus. By utilizing the parametric image sinδ to collect information on the spatial photon state distribution and far-field asymmetry with a sub-wavelength resolution, the appearance of viruses can be detected. To further reduce the background noise and enhance the asymmetric signals, an extended Laplace operator method which divides the detection area into topological units and then calculates the asymmetric parameter is applied, enabling easier determination of virus appearance. Experimental results show that the developed method can provide a detection limit as low as 56 vp/150µL on a large scale, which has great potential in early virus screening and other applications. Optica Publishing Group 2023-02-22 /pmc/articles/PMC10026587/ /pubmed/36950230 http://dx.doi.org/10.1364/BOE.483831 Text en Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Jin, Xiao Xue, Lu Ye, Shengwei Cheng, Weiqing Hou, Jamie Jiangmin Hou, Lianping Marsh, John H. Sun, Ming Liu, Xuefeng Xiong, Jichuan Ni, Bin Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing |
title | Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing |
title_full | Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing |
title_fullStr | Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing |
title_full_unstemmed | Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing |
title_short | Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing |
title_sort | asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026587/ https://www.ncbi.nlm.nih.gov/pubmed/36950230 http://dx.doi.org/10.1364/BOE.483831 |
work_keys_str_mv | AT jinxiao asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT xuelu asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT yeshengwei asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT chengweiqing asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT houjamiejiangmin asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT houlianping asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT marshjohnh asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT sunming asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT liuxuefeng asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT xiongjichuan asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing AT nibin asymmetricparameterenhancementinthesplitringcavityarrayforviruslikeparticlesensing |