Cargando…
Optimizing MRI-based brain tumor classification and detection using AI: A comparative analysis of neural networks, transfer learning, data augmentation, and the cross-transformer network
Early detection and diagnosis of brain tumors are crucial to taking adequate preventive measures, as with most cancers. On the other hand, artificial intelligence (AI) has grown exponentially, even in such complex environments as medicine. Here it’s proposed a framework to explore state-of-the-art d...
Autores principales: | Anaya-Isaza, Andrés, Mera-Jiménez, Leonel, Verdugo-Alejo, Lucía, Sarasti, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027502/ https://www.ncbi.nlm.nih.gov/pubmed/36950474 http://dx.doi.org/10.1016/j.ejro.2023.100484 |
Ejemplares similares
-
Classification of Heart Sounds Using Chaogram Transform and Deep Convolutional Neural Network Transfer Learning
por: Harimi, Ali, et al.
Publicado: (2022) -
Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images
por: Chelghoum, Rayene, et al.
Publicado: (2020) -
Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks
por: Lo, Justin, et al.
Publicado: (2021) -
An empirical survey of data augmentation for time series classification with neural networks
por: Iwana, Brian Kenji, et al.
Publicado: (2021) -
Cancerous and Non-Cancerous Brain MRI Classification Method Based on Convolutional Neural Network and Log-Polar Transformation
por: Jibon, Ferdaus Anam, et al.
Publicado: (2022)