Cargando…
A novel intelligent bearing fault diagnosis method based on signal process and multi-kernel joint distribution adaptation
The present research on intelligent bearing fault diagnosis assumes that the same feature distribution is used to obtain training and testing data. However, the domain shift (distribution discrepancy) issue generally occurs in both datasets because of different operational conditions. The domain ada...
Autores principales: | Xiong, Jundi, Cui, Shihai, Tang, Haihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027665/ https://www.ncbi.nlm.nih.gov/pubmed/36941284 http://dx.doi.org/10.1038/s41598-023-31648-y |
Ejemplares similares
-
Combining Multi-Scale Wavelet Entropy and Kernelized Classification for Bearing Multi-Fault Diagnosis
por: Rodriguez, Nibaldo, et al.
Publicado: (2019) -
Stationary Wavelet-Fourier Entropy and Kernel Extreme Learning for Bearing Multi-Fault Diagnosis
por: Rodriguez, Nibaldo, et al.
Publicado: (2019) -
Deep Transfer Network with Multi-Space Dynamic Distribution Adaptation for Bearing Fault Diagnosis
por: Zheng, Xiaorong, et al.
Publicado: (2022) -
Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings
por: Zhou, Hongdi, et al.
Publicado: (2017) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023)