Cargando…

Isoform-specific knockdown of long and intermediate prolactin receptors interferes with evolution of B-cell neoplasms

Prolactin (PRL) is elevated in B-cell-mediated lymphoproliferative diseases and promotes B-cell survival. Whether PRL or PRL receptors drive the evolution of B-cell malignancies is unknown. We measure changes in B cells after knocking down the pro-proliferative, anti-apoptotic long isoform of the PR...

Descripción completa

Detalles Bibliográficos
Autores principales: Taghi Khani, Adeleh, Kumar, Anil, Sanchez Ortiz, Ashly, Radecki, Kelly C., Aramburo, Soraya, Lee, Sung June, Hu, Zunsong, Damirchi, Behzad, Lorenson, Mary Y., Wu, Xiwei, Gu, Zhaohui, Stohl, William, Sanz, Ignacio, Meffre, Eric, Müschen, Markus, Forman, Stephen J., Koff, Jean L., Walker, Ameae M., Swaminathan, Srividya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027679/
https://www.ncbi.nlm.nih.gov/pubmed/36941341
http://dx.doi.org/10.1038/s42003-023-04667-8
Descripción
Sumario:Prolactin (PRL) is elevated in B-cell-mediated lymphoproliferative diseases and promotes B-cell survival. Whether PRL or PRL receptors drive the evolution of B-cell malignancies is unknown. We measure changes in B cells after knocking down the pro-proliferative, anti-apoptotic long isoform of the PRL receptor (LFPRLR) in vivo in systemic lupus erythematosus (SLE)- and B-cell lymphoma-prone mouse models, and the long plus intermediate isoforms (LF/IFPRLR) in human B-cell malignancies. To knockdown LF/IFPRLRs without suppressing expression of the counteractive short PRLR isoforms (SFPRLRs), we employ splice-modulating DNA oligomers. In SLE-prone mice, LFPRLR knockdown reduces numbers and proliferation of pathogenic B-cell subsets and lowers the risk of B-cell transformation by downregulating expression of activation-induced cytidine deaminase. LFPRLR knockdown in lymphoma-prone mice reduces B-cell numbers and their expression of BCL2 and TCL1. In overt human B-cell malignancies, LF/IFPRLR knockdown reduces B-cell viability and their MYC and BCL2 expression. Unlike normal B cells, human B-cell malignancies secrete autocrine PRL and often express no SFPRLRs. Neutralization of secreted PRL reduces the viability of B-cell malignancies. Knockdown of LF/IFPRLR reduces the growth of human B-cell malignancies in vitro and in vivo. Thus, LF/IFPRLR knockdown is a highly specific approach to block the evolution of B-cell neoplasms.