Cargando…
Data augmentation and multimodal learning for predicting drug response in patient-derived xenografts from gene expressions and histology images
Patient-derived xenografts (PDXs) are an appealing platform for preclinical drug studies. A primary challenge in modeling drug response prediction (DRP) with PDXs and neural networks (NNs) is the limited number of drug response samples. We investigate multimodal neural network (MM-Net) and data augm...
Autores principales: | Partin, Alexander, Brettin, Thomas, Zhu, Yitan, Dolezal, James M., Kochanny, Sara, Pearson, Alexander T., Shukla, Maulik, Evrard, Yvonne A., Doroshow, James H., Stevens, Rick L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027779/ https://www.ncbi.nlm.nih.gov/pubmed/36960342 http://dx.doi.org/10.3389/fmed.2023.1058919 |
Ejemplares similares
-
Enhanced Co-Expression Extrapolation (COXEN) Gene Selection Method for Building Anti-Cancer Drug Response Prediction Models
por: Zhu, Yitan, et al.
Publicado: (2020) -
Ensemble transfer learning for the prediction of anti-cancer drug response
por: Zhu, Yitan, et al.
Publicado: (2020) -
Converting tabular data into images for deep learning with convolutional neural networks
por: Zhu, Yitan, et al.
Publicado: (2021) -
Publisher Correction: Converting tabular data into images for deep learning with convolutional neural networks
por: Zhu, Yitan, et al.
Publicado: (2021) -
Learning curves for drug response prediction in cancer cell lines
por: Partin, Alexander, et al.
Publicado: (2021)