Cargando…
A cardiologist’s guide to machine learning in cardiovascular disease prognosis prediction
A modern-day physician is faced with a vast abundance of clinical and scientific data, by far surpassing the capabilities of the human mind. Until the last decade, advances in data availability have not been accompanied by analytical approaches. The advent of machine learning (ML) algorithms might i...
Autores principales: | Kresoja, Karl-Patrik, Unterhuber, Matthias, Wachter, Rolf, Thiele, Holger, Lurz, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027799/ https://www.ncbi.nlm.nih.gov/pubmed/36939941 http://dx.doi.org/10.1007/s00395-023-00982-7 |
Ejemplares similares
-
Treatment response to spironolactone in patients with heart failure with preserved ejection fraction: a machine learning-based analysis of two randomized controlled trials
por: Kresoja, Karl-Patrik, et al.
Publicado: (2023) -
Deep learning detects heart failure with preserved ejection fraction using a baseline electrocardiogram
por: Unterhuber, Matthias, et al.
Publicado: (2021) -
Comparison of Long‐Term Outcomes for Responders Versus Non‐Responders Following Renal Denervation in Resistant Hypertension
por: Fengler, Karl, et al.
Publicado: (2021) -
Fate of iatrogenic atrial septal defects following mitral transcatheter edge-to-edge repair – a subanalysis of the MITHRAS trial
por: Blazek, Stephan, et al.
Publicado: (2022) -
Sympathomodulation in Heart Failure with High vs. Normal Ejection Fraction
por: Fengler, Karl, et al.
Publicado: (2022)