Cargando…

Synchronized oscillations of carbon nanotubes dispersed in solution

Although synchronized oscillations are found in a variety of systems and living organisms in nature, there has been no report on technologically important materials. We have observed by a fluorescence microscope that a large number of carbon nanotubes (CNTs) dispersed in an aqueous mixture of the su...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukumoto, Makoto, Akai, Ryunosuke, Yoshida, Yume, Sakuma, Shin-nosuke, Ono, Hayato, Mori, Rintaro, Sano, Masahito
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027871/
https://www.ncbi.nlm.nih.gov/pubmed/36941325
http://dx.doi.org/10.1038/s41598-023-31813-3
Descripción
Sumario:Although synchronized oscillations are found in a variety of systems and living organisms in nature, there has been no report on technologically important materials. We have observed by a fluorescence microscope that a large number of carbon nanotubes (CNTs) dispersed in an aqueous mixture of the surfactant and dye execute synchronized oscillations spontaneously. The movement was quantified to give a power spectrum, revealing a single, sharp synchronization peak at 20 Hz. It was found not to be affected nor created by external vibrations. The surfactant concentration dependence demonstrates that the Kuramoto model is applicable to describe the CNT synchronization. It is always associated with the power-law noise, indicating the presence of complex heterogeneous networks. These results suggest a highly cooperative form of the sparse CNT network connected with variable linkages.