Cargando…
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
Since the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyze this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this paper, we address the segmentation of Covid-19 infection from CT-scans. To improv...
Autores principales: | Bougourzi, Fares, Distante, Cosimo, Dornaika, Fadi, Taleb-Ahmed, Abdelmalik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027962/ https://www.ncbi.nlm.nih.gov/pubmed/36966605 http://dx.doi.org/10.1016/j.media.2023.102797 |
Ejemplares similares
-
Per-COVID-19: A Benchmark Dataset for COVID-19 Percentage Estimation from CT-Scans
por: Bougourzi, Fares, et al.
Publicado: (2021) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022) -
Recognition of COVID-19 from CT Scans Using Two-Stage Deep-Learning-Based Approach: CNR-IEMN †
por: Bougourzi, Fares, et al.
Publicado: (2021) -
Decoders configurations based on Unet family and feature pyramid network for COVID-19 segmentation on CT images
por: Nguyen, Hai Thanh, et al.
Publicado: (2021) -
SAA-UNet: Spatial Attention and Attention Gate UNet for COVID-19 Pneumonia Segmentation from Computed Tomography
por: Alshomrani, Shroog, et al.
Publicado: (2023)