Cargando…
Learning robotic manipulation skills with multiple semantic goals by conservative curiosity-motivated exploration
Reinforcement learning (RL) empowers the agent to learn robotic manipulation skills autonomously. Compared with traditional single-goal RL, semantic-goal-conditioned RL expands the agent capacity to accomplish multiple semantic manipulation instructions. However, due to sparsely distributed semantic...
Autores principales: | Han, Changlin, Peng, Zhiyong, Liu, Yadong, Tang, Jingsheng, Yu, Yang, Zhou, Zongtan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028088/ https://www.ncbi.nlm.nih.gov/pubmed/36960195 http://dx.doi.org/10.3389/fnbot.2023.1089270 |
Ejemplares similares
-
Computational mechanisms of curiosity and goal-directed exploration
por: Schwartenbeck, Philipp, et al.
Publicado: (2019) -
Semantic Representation of Robot Manipulation with Knowledge Graph
por: Miao, Runqing, et al.
Publicado: (2023) -
Towards BCI-actuated smart wheelchair system
por: Tang, Jingsheng, et al.
Publicado: (2018) -
Curiosity Search: Producing Generalists by Encouraging Individuals to Continually Explore and Acquire Skills throughout Their Lifetime
por: Stanton, Christopher, et al.
Publicado: (2016) -
Travels with curiosity: exploring Mars by Rover
por: Byrne, Charles J
Publicado: (2020)