Cargando…
Weighted correlation network analysis identifies multiple susceptibility loci for low‐grade glioma
BACKGROUND: The current molecular classifications cannot completely explain the polarized malignant biological behavior of low‐grade gliomas (LGGs), especially for tumor recurrence. Therefore, we tried to identify suspicious hub genes related to tumor recurrence in LGGs. METHODS: In this study, we c...
Autores principales: | Niu, Xiaodong, Pan, Qi, Zhang, Qianwen, Wang, Xiang, Liu, Yanhui, Li, Yu, Zhang, Yuekang, Yang, Yuan, Mao, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028094/ https://www.ncbi.nlm.nih.gov/pubmed/36305248 http://dx.doi.org/10.1002/cam4.5368 |
Ejemplares similares
-
Genome-wide association study identifies multiple susceptibility loci for glioma
por: Kinnersley, Ben, et al.
Publicado: (2015) -
Deep Learning for the Prediction of the Survival of Midline Diffuse Glioma with an H3K27M Alteration
por: Huang, Bowen, et al.
Publicado: (2023) -
Meta-Analyses of Splicing and Expression Quantitative Trait Loci Identified Susceptibility Genes of Glioma
por: Patro, C. Pawan K., et al.
Publicado: (2021) -
Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci
por: Shen, Changbing, et al.
Publicado: (2016) -
Deep learning‐based prediction of H3K27M alteration in diffuse midline gliomas based on whole‐brain MRI
por: Huang, Bowen, et al.
Publicado: (2023)