Cargando…

Facial expression recognition in videos using hybrid CNN & ConvLSTM

The three-dimensional convolutional neural network (3D-CNN) and long short-term memory (LSTM) have consistently outperformed many approaches in video-based facial expression recognition (VFER). The image is unrolled to a one-dimensional vector by the vanilla version of the fully-connected LSTM (FC-L...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Rajesh, Saurav, Sumeet, Kumar, Tarun, Saini, Ravi, Vohra, Anil, Singh, Sanjay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028317/
https://www.ncbi.nlm.nih.gov/pubmed/37256027
http://dx.doi.org/10.1007/s41870-023-01183-0
Descripción
Sumario:The three-dimensional convolutional neural network (3D-CNN) and long short-term memory (LSTM) have consistently outperformed many approaches in video-based facial expression recognition (VFER). The image is unrolled to a one-dimensional vector by the vanilla version of the fully-connected LSTM (FC-LSTM), which leads to the loss of crucial spatial information. Convolutional LSTM (ConvLSTM) overcomes this limitation by performing LSTM operations in convolutions without unrolling, thus retaining useful spatial information. Motivated by this, in this paper, we propose a neural network architecture that consists of a blend of 3D-CNN and ConvLSTM for VFER. The proposed hybrid architecture captures spatiotemporal information from the video sequences of emotions and attains competitive accuracy on three FER datasets open to the public, namely the SAVEE, CK + , and AFEW. The experimental results demonstrate excellent performance without external emotional data with the added advantage of having a simple model with fewer parameters. Moreover, unlike the state-of-the-art deep learning models, our designed FER pipeline improves execution speed by many factors while achieving competitive recognition accuracy. Hence, the proposed FER pipeline is an appropriate candidate for recognizing facial expressions on resource-limited embedded platforms for real-time applications.