Cargando…
SuperMini-seg: An ultra lightweight network for COVID-19 lung infection segmentation from CT images
The automatic segmentation of lung lesions from COVID-19 computed tomography (CT) images is helpful in establishing a quantitative model to diagnose and treat COVID-19. To this end, this study proposes a lightweight segmentation network called the SuperMini-Seg. We propose a new module called the tr...
Autores principales: | Yang, Yuan, Zhang, Lin, Ren, Lei, Zhou, Longfei, Wang, Xiaohan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028361/ https://www.ncbi.nlm.nih.gov/pubmed/36998783 http://dx.doi.org/10.1016/j.bspc.2023.104896 |
Ejemplares similares
-
MMViT-Seg: A lightweight transformer and CNN fusion network for COVID-19 segmentation
por: Yang, Yuan, et al.
Publicado: (2023) -
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
MixSeg: a lightweight and accurate mix structure network for semantic segmentation of apple leaf disease in complex environments
por: Lu, Bibo, et al.
Publicado: (2023) -
Joint Cancer Segmentation and PI-RADS Classification on Multiparametric MRI Using MiniSegCaps Network
por: Jiang, Wenting, et al.
Publicado: (2023) -
SegChaNet: A Novel Model for Lung Cancer Segmentation in CT Scans
por: Cifci, Mehmet Akif
Publicado: (2022)