Cargando…

TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides

The accurate identification of anticancer peptides (ACPs) and antimicrobial peptides (AMPs) remains a computational challenge. We propose a tri-fusion neural network termed TriNet for the accurate prediction of both ACPs and AMPs. The framework first defines three kinds of features to capture the pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Wanyun, Liu, Yufei, Li, Yingxin, Kong, Siqi, Wang, Weilin, Ding, Boyun, Han, Jiyun, Mou, Chaozhou, Gao, Xin, Liu, Juntao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028424/
https://www.ncbi.nlm.nih.gov/pubmed/36960450
http://dx.doi.org/10.1016/j.patter.2023.100702
_version_ 1784909944694243328
author Zhou, Wanyun
Liu, Yufei
Li, Yingxin
Kong, Siqi
Wang, Weilin
Ding, Boyun
Han, Jiyun
Mou, Chaozhou
Gao, Xin
Liu, Juntao
author_facet Zhou, Wanyun
Liu, Yufei
Li, Yingxin
Kong, Siqi
Wang, Weilin
Ding, Boyun
Han, Jiyun
Mou, Chaozhou
Gao, Xin
Liu, Juntao
author_sort Zhou, Wanyun
collection PubMed
description The accurate identification of anticancer peptides (ACPs) and antimicrobial peptides (AMPs) remains a computational challenge. We propose a tri-fusion neural network termed TriNet for the accurate prediction of both ACPs and AMPs. The framework first defines three kinds of features to capture the peptide information contained in serial fingerprints, sequence evolutions, and physicochemical properties, which are then fed into three parallel modules: a convolutional neural network module enhanced by channel attention, a bidirectional long short-term memory module, and an encoder module for training and final classification. To achieve a better training effect, TriNet is trained via a training approach using iterative interactions between the samples in the training and validation datasets. TriNet is tested on multiple challenging ACP and AMP datasets and exhibits significant improvements over various state-of-the-art methods. The web server and source code of TriNet are respectively available at http://liulab.top/TriNet/server and https://github.com/wanyunzh/TriNet.
format Online
Article
Text
id pubmed-10028424
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-100284242023-03-22 TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides Zhou, Wanyun Liu, Yufei Li, Yingxin Kong, Siqi Wang, Weilin Ding, Boyun Han, Jiyun Mou, Chaozhou Gao, Xin Liu, Juntao Patterns (N Y) Article The accurate identification of anticancer peptides (ACPs) and antimicrobial peptides (AMPs) remains a computational challenge. We propose a tri-fusion neural network termed TriNet for the accurate prediction of both ACPs and AMPs. The framework first defines three kinds of features to capture the peptide information contained in serial fingerprints, sequence evolutions, and physicochemical properties, which are then fed into three parallel modules: a convolutional neural network module enhanced by channel attention, a bidirectional long short-term memory module, and an encoder module for training and final classification. To achieve a better training effect, TriNet is trained via a training approach using iterative interactions between the samples in the training and validation datasets. TriNet is tested on multiple challenging ACP and AMP datasets and exhibits significant improvements over various state-of-the-art methods. The web server and source code of TriNet are respectively available at http://liulab.top/TriNet/server and https://github.com/wanyunzh/TriNet. Elsevier 2023-02-28 /pmc/articles/PMC10028424/ /pubmed/36960450 http://dx.doi.org/10.1016/j.patter.2023.100702 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhou, Wanyun
Liu, Yufei
Li, Yingxin
Kong, Siqi
Wang, Weilin
Ding, Boyun
Han, Jiyun
Mou, Chaozhou
Gao, Xin
Liu, Juntao
TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides
title TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides
title_full TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides
title_fullStr TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides
title_full_unstemmed TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides
title_short TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides
title_sort trinet: a tri-fusion neural network for the prediction of anticancer and antimicrobial peptides
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028424/
https://www.ncbi.nlm.nih.gov/pubmed/36960450
http://dx.doi.org/10.1016/j.patter.2023.100702
work_keys_str_mv AT zhouwanyun trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT liuyufei trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT liyingxin trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT kongsiqi trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT wangweilin trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT dingboyun trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT hanjiyun trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT mouchaozhou trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT gaoxin trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides
AT liujuntao trinetatrifusionneuralnetworkforthepredictionofanticancerandantimicrobialpeptides