Cargando…
Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials
Using hypothesis-learning-driven automated scanning probe microscopy (SPM), we explore the bias-induced transformations that underpin the functionality of broad classes of devices and materials from batteries and memristors to ferroelectrics and antiferroelectrics. Optimization and design of these m...
Autores principales: | Liu, Yongtao, Morozovska, Anna N., Eliseev, Eugene A., Kelley, Kyle P., Vasudevan, Rama, Ziatdinov, Maxim, Kalinin, Sergei V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028429/ https://www.ncbi.nlm.nih.gov/pubmed/36960442 http://dx.doi.org/10.1016/j.patter.2023.100704 |
Ejemplares similares
-
Explainability and human intervention in autonomous scanning probe microscopy
por: Liu, Yongtao, et al.
Publicado: (2023) -
Exploring Physics of Ferroelectric Domain Walls in Real Time: Deep Learning Enabled Scanning Probe Microscopy
por: Liu, Yongtao, et al.
Publicado: (2022) -
Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data
por: Nelson, Christopher T., et al.
Publicado: (2020) -
Physics Discovery in Nanoplasmonic Systems via Autonomous Experiments in Scanning Transmission Electron Microscopy
por: Roccapriore, Kevin M., et al.
Publicado: (2022) -
Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study
por: Ziatdinov, Maxim, et al.
Publicado: (2019)