Cargando…
Unsupervised cross-domain translation via deep learning and adversarial attention neural networks and application to music-inspired protein designs
Taking inspiration from nature about how to design materials has been a fruitful approach, used by humans for millennia. In this paper we report a method that allows us to discover how patterns in disparate domains can be reversibly related using a computationally rigorous approach, the AttentionCro...
Autor principal: | Buehler, Markus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028431/ https://www.ncbi.nlm.nih.gov/pubmed/36960446 http://dx.doi.org/10.1016/j.patter.2023.100692 |
Ejemplares similares
-
Cross-species behavior analysis with attention-based domain-adversarial deep neural networks
por: Maekawa, Takuya, et al.
Publicado: (2021) -
Generative Adversarial Phonology: Modeling Unsupervised Phonetic and Phonological Learning With Neural Networks
por: Beguš, Gašper
Publicado: (2020) -
Regularity Normalization: Neuroscience-Inspired Unsupervised Attention across Neural Network Layers †
por: Lin, Baihan
Publicado: (2021) -
Image Translation by Domain-Adversarial Training
por: Li, Zhuorong, et al.
Publicado: (2018) -
Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks
por: Wang, Xiaoqing, et al.
Publicado: (2018)