Cargando…
A Biological OR(XNOR) Logic Gate Couples Carbon Source and Transgene Expression Switching in a Komagataella phaffii (Pichia pastoris) Strain Co-producing Process-Enhancing Lipase and a Virus-like Particle (VLP) Vaccine
[Image: see text] We constructed a three-input biological logic gate: S OR (G XNOR M), where S is sorbitol, G is glycerol, and M is methanol, to optimize co-expression of two transgenes in Komagataella phaffii using batch-mode carbon source switching (CSS). K. phaffii was engineered to harbor transg...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028693/ https://www.ncbi.nlm.nih.gov/pubmed/36848292 http://dx.doi.org/10.1021/acssynbio.2c00342 |
Sumario: | [Image: see text] We constructed a three-input biological logic gate: S OR (G XNOR M), where S is sorbitol, G is glycerol, and M is methanol, to optimize co-expression of two transgenes in Komagataella phaffii using batch-mode carbon source switching (CSS). K. phaffii was engineered to harbor transgenes encoding a Candida rugosa triacylglycerol lipase, which can enhance downstream processing by removing host cell lipids from homogenates, and the hepatitis B virus surface antigen (HBsAg), a protein that self-assembles into a virus-like particle (VLP) vaccine. Using the native alcohol oxidase 1 (P(AOX1)) and enolase 1 (P(ENO1)) promoters to direct VLP vaccine and lipase expression, respectively, successfully provided an OR(XNOR) gate function with double-repression as the output. This logic gate functionality enabled use of CSS to ensure that approximately 80% of total VLP yield was accumulated before cells were burdened with lipase expression in 250 mL DasGip bioreactor cultivation. |
---|