Cargando…

Microsatellites used in forensics are located in regions unusually rich in trait-associated variants

The 20 short tandem repeat (STR) markers of the combined DNA index system (CODIS) are the basis of the vast majority of forensic genetics in the United States. One argument for permissive rules about the collection of CODIS genotypes is that the CODIS markers are thought to contain information relev...

Descripción completa

Detalles Bibliográficos
Autores principales: Link, Vivian, Zavaleta, Yuómi Jhony A., Reyes, Rochelle-Jan, Ding, Linda, Wang, Judy, Rohlfs, Rori V., Edge, Michael D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028909/
https://www.ncbi.nlm.nih.gov/pubmed/36945578
http://dx.doi.org/10.1101/2023.03.07.531629
Descripción
Sumario:The 20 short tandem repeat (STR) markers of the combined DNA index system (CODIS) are the basis of the vast majority of forensic genetics in the United States. One argument for permissive rules about the collection of CODIS genotypes is that the CODIS markers are thought to contain information relevant to identification only (such as a human fingerprint would), with little information about ancestry or traits. However, in the past 20 years, a quickly growing field has identified hundreds of thousands of genotype-trait associations. Here we conduct a survey of the landscape of such associations surrounding the CODIS loci as compared with non-CODIS STRs. We find that the regions around the CODIS markers are enriched for both known pathogenic variants (>90th percentile) and for SNPs identified as trait-associated in genome-wide association studies (GWAS) (≥95th percentile in 10kb and 100kb flanking regions), compared with other random sets of autosomal tetranucleotide-repeat STRs. Although it is not obvious how much phenotypic information CODIS would need to convey to strain the “DNA fingerprint” analogy, the CODIS markers, considered as a set, are in regions unusually dense with variants with known phenotypic associations.