Cargando…
INTERPRETING GENERATIVE ADVERSARIAL NETWORKS TO INFER NATURAL SELECTION FROM GENETIC DATA
Understanding natural selection in humans and other species is a major focus for the use of machine learning in population genetics. Existing methods rely on computationally intensive simulated training data. Unlike efficient neutral coalescent simulations for demographic inference, realistic simula...
Autores principales: | Riley, Rebecca, Mathieson, Iain, Mathieson, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028936/ https://www.ncbi.nlm.nih.gov/pubmed/36945387 http://dx.doi.org/10.1101/2023.03.07.531546 |
Ejemplares similares
-
Automatic inference of demographic parameters using generative adversarial networks
por: Wang, Zhanpeng, et al.
Publicado: (2021) -
Direct detection of natural selection in Bronze Age Britain
por: Mathieson, Iain, et al.
Publicado: (2022) -
The challenge of detecting recent natural selection in human populations
por: Mills, Melinda C., et al.
Publicado: (2022) -
Phylogenetic inference using generative adversarial networks
por: Smith, Megan L, et al.
Publicado: (2023) -
ImaGene: a convolutional neural network to quantify natural selection from genomic data
por: Torada, Luis, et al.
Publicado: (2019)