Cargando…
MAHOMES II: A webserver for predicting if a metal binding site is enzymatic
Recent advances have enabled high-quality computationally generated structures for proteins with no solved crystal structures. However, protein function data remains largely limited to experimental methods and homology mapping. Since structure determines function, it is natural that methods capable...
Autores principales: | Feehan, Ryan, Copeland, Matthew, Franklin, Meghan W., Slusky, Joanna S. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028950/ https://www.ncbi.nlm.nih.gov/pubmed/36945603 http://dx.doi.org/10.1101/2023.03.08.531790 |
Ejemplares similares
-
Machine learning differentiates enzymatic and non-enzymatic metals in proteins
por: Feehan, Ryan, et al.
Publicado: (2021) -
TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets
por: Stank, Antonia, et al.
Publicado: (2017) -
Evolutionary pathways of repeat protein topology in bacterial outer membrane proteins
por: Franklin, Meghan Whitney, et al.
Publicado: (2018) -
ProTox-II: a webserver for the prediction of toxicity of chemicals
por: Banerjee, Priyanka, et al.
Publicado: (2018) -
MultiBind and MAPPIS: webservers for multiple alignment of protein 3D-binding sites and their interactions
por: Shulman-Peleg, Alexandra, et al.
Publicado: (2008)