Cargando…
Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor
Manganese cofactors activate strong chemical bonds in many essential enzymes. Yet very few manganese-dependent enzymes are known to functionalize ubiquitous carbon-hydrogen (C-H) bonds, and those that catalyze this important reaction display limited intrinsic reactivity. Herein, we report that the 2...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029006/ https://www.ncbi.nlm.nih.gov/pubmed/36945426 http://dx.doi.org/10.1101/2023.03.10.532131 |
Sumario: | Manganese cofactors activate strong chemical bonds in many essential enzymes. Yet very few manganese-dependent enzymes are known to functionalize ubiquitous carbon-hydrogen (C-H) bonds, and those that catalyze this important reaction display limited intrinsic reactivity. Herein, we report that the 2-aminoisobutyric acid hydroxylase from Rhodococcus wratislaviensis requires manganese to functionalize a C-H bond possessing a bond dissociation enthalpy (BDE) exceeding 100 kcal/mol. Structural and spectroscopic studies of this enzyme reveal a redox-active, heterobimetallic manganese-iron active site that utilizes a manganese ion at the locus for O(2) activation and substrate coordination. Accordingly, this enzyme represents the first documented Mn-dependent monooxygenase in biology. Related proteins are widespread in microorganisms suggesting that many uncharacterized monooxygenases may utilize manganese-containing cofactors to accomplish diverse biological tasks. |
---|