Cargando…
Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b)...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029035/ https://www.ncbi.nlm.nih.gov/pubmed/36945505 http://dx.doi.org/10.1101/2023.03.07.23286920 |
_version_ | 1784910063891120128 |
---|---|
author | Golob, Jonathan L. Oskotsky, Tomiko T. Tang, Alice S. Roldan, Alennie Chung, Verena Ha, Connie W.Y. Wong, Ronald J. Flynn, Kaitlin J. Parraga-Leo, Antonio Wibrand, Camilla Minot, Samuel S. Andreoletti, Gaia Kosti, Idit Bletz, Julie Nelson, Amber Gao, Jifan Wei, Zhoujingpeng Chen, Guanhua Tang, Zheng-Zheng Novielli, Pierfrancesco Romano, Donato Pantaleo, Ester Amoroso, Nicola Monaco, Alfonso Vacca, Mirco De Angelis, Maria Bellotti, Roberto Tangaro, Sabina Kuntzleman, Abigail Bigcraft, Isaac Techtmann, Stephen Bae, Daehun Kim, Eunyoung Jeon, Jongbum Joe, Soobok Theis, Kevin R. Ng, Sherrianne Lee Li, Yun S. Diaz-Gimeno, Patricia Bennett, Phillip R. MacIntyre, David A. Stolovitzky, Gustavo Lynch, Susan V. Albrecht, Jake Gomez-Lopez, Nardhy Romero, Roberto Stevenson, David K. Aghaeepour, Nima Tarca, Adi L. Costello, James C. Sirota, Marina |
author_facet | Golob, Jonathan L. Oskotsky, Tomiko T. Tang, Alice S. Roldan, Alennie Chung, Verena Ha, Connie W.Y. Wong, Ronald J. Flynn, Kaitlin J. Parraga-Leo, Antonio Wibrand, Camilla Minot, Samuel S. Andreoletti, Gaia Kosti, Idit Bletz, Julie Nelson, Amber Gao, Jifan Wei, Zhoujingpeng Chen, Guanhua Tang, Zheng-Zheng Novielli, Pierfrancesco Romano, Donato Pantaleo, Ester Amoroso, Nicola Monaco, Alfonso Vacca, Mirco De Angelis, Maria Bellotti, Roberto Tangaro, Sabina Kuntzleman, Abigail Bigcraft, Isaac Techtmann, Stephen Bae, Daehun Kim, Eunyoung Jeon, Jongbum Joe, Soobok Theis, Kevin R. Ng, Sherrianne Lee Li, Yun S. Diaz-Gimeno, Patricia Bennett, Phillip R. MacIntyre, David A. Stolovitzky, Gustavo Lynch, Susan V. Albrecht, Jake Gomez-Lopez, Nardhy Romero, Roberto Stevenson, David K. Aghaeepour, Nima Tarca, Adi L. Costello, James C. Sirota, Marina |
author_sort | Golob, Jonathan L. |
collection | PubMed |
description | Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were important features in the top performing models, most of which were tree based methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better understand and prevent preterm birth. |
format | Online Article Text |
id | pubmed-10029035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-100290352023-03-22 Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research Golob, Jonathan L. Oskotsky, Tomiko T. Tang, Alice S. Roldan, Alennie Chung, Verena Ha, Connie W.Y. Wong, Ronald J. Flynn, Kaitlin J. Parraga-Leo, Antonio Wibrand, Camilla Minot, Samuel S. Andreoletti, Gaia Kosti, Idit Bletz, Julie Nelson, Amber Gao, Jifan Wei, Zhoujingpeng Chen, Guanhua Tang, Zheng-Zheng Novielli, Pierfrancesco Romano, Donato Pantaleo, Ester Amoroso, Nicola Monaco, Alfonso Vacca, Mirco De Angelis, Maria Bellotti, Roberto Tangaro, Sabina Kuntzleman, Abigail Bigcraft, Isaac Techtmann, Stephen Bae, Daehun Kim, Eunyoung Jeon, Jongbum Joe, Soobok Theis, Kevin R. Ng, Sherrianne Lee Li, Yun S. Diaz-Gimeno, Patricia Bennett, Phillip R. MacIntyre, David A. Stolovitzky, Gustavo Lynch, Susan V. Albrecht, Jake Gomez-Lopez, Nardhy Romero, Roberto Stevenson, David K. Aghaeepour, Nima Tarca, Adi L. Costello, James C. Sirota, Marina medRxiv Article Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were important features in the top performing models, most of which were tree based methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better understand and prevent preterm birth. Cold Spring Harbor Laboratory 2023-04-11 /pmc/articles/PMC10029035/ /pubmed/36945505 http://dx.doi.org/10.1101/2023.03.07.23286920 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Golob, Jonathan L. Oskotsky, Tomiko T. Tang, Alice S. Roldan, Alennie Chung, Verena Ha, Connie W.Y. Wong, Ronald J. Flynn, Kaitlin J. Parraga-Leo, Antonio Wibrand, Camilla Minot, Samuel S. Andreoletti, Gaia Kosti, Idit Bletz, Julie Nelson, Amber Gao, Jifan Wei, Zhoujingpeng Chen, Guanhua Tang, Zheng-Zheng Novielli, Pierfrancesco Romano, Donato Pantaleo, Ester Amoroso, Nicola Monaco, Alfonso Vacca, Mirco De Angelis, Maria Bellotti, Roberto Tangaro, Sabina Kuntzleman, Abigail Bigcraft, Isaac Techtmann, Stephen Bae, Daehun Kim, Eunyoung Jeon, Jongbum Joe, Soobok Theis, Kevin R. Ng, Sherrianne Lee Li, Yun S. Diaz-Gimeno, Patricia Bennett, Phillip R. MacIntyre, David A. Stolovitzky, Gustavo Lynch, Susan V. Albrecht, Jake Gomez-Lopez, Nardhy Romero, Roberto Stevenson, David K. Aghaeepour, Nima Tarca, Adi L. Costello, James C. Sirota, Marina Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research |
title | Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research |
title_full | Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research |
title_fullStr | Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research |
title_full_unstemmed | Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research |
title_short | Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research |
title_sort | microbiome preterm birth dream challenge: crowdsourcing machine learning approaches to advance preterm birth research |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029035/ https://www.ncbi.nlm.nih.gov/pubmed/36945505 http://dx.doi.org/10.1101/2023.03.07.23286920 |
work_keys_str_mv | AT golobjonathanl microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT oskotskytomikot microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT tangalices microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT roldanalennie microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT chungverena microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT haconniewy microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT wongronaldj microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT flynnkaitlinj microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT parragaleoantonio microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT wibrandcamilla microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT minotsamuels microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT andreolettigaia microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT kostiidit microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT bletzjulie microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT nelsonamber microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT gaojifan microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT weizhoujingpeng microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT chenguanhua microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT tangzhengzheng microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT noviellipierfrancesco microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT romanodonato microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT pantaleoester microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT amorosonicola microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT monacoalfonso microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT vaccamirco microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT deangelismaria microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT bellottiroberto microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT tangarosabina microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT kuntzlemanabigail microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT bigcraftisaac microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT techtmannstephen microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT baedaehun microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT kimeunyoung microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT jeonjongbum microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT joesoobok microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT theiskevinr microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT ngsherrianne microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT leeliyuns microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT diazgimenopatricia microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT bennettphillipr microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT macintyredavida microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT stolovitzkygustavo microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT lynchsusanv microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT albrechtjake microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT gomezlopeznardhy microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT romeroroberto microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT stevensondavidk microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT aghaeepournima microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT tarcaadil microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT costellojamesc microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch AT sirotamarina microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch |