Cargando…

Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research

Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b)...

Descripción completa

Detalles Bibliográficos
Autores principales: Golob, Jonathan L., Oskotsky, Tomiko T., Tang, Alice S., Roldan, Alennie, Chung, Verena, Ha, Connie W.Y., Wong, Ronald J., Flynn, Kaitlin J., Parraga-Leo, Antonio, Wibrand, Camilla, Minot, Samuel S., Andreoletti, Gaia, Kosti, Idit, Bletz, Julie, Nelson, Amber, Gao, Jifan, Wei, Zhoujingpeng, Chen, Guanhua, Tang, Zheng-Zheng, Novielli, Pierfrancesco, Romano, Donato, Pantaleo, Ester, Amoroso, Nicola, Monaco, Alfonso, Vacca, Mirco, De Angelis, Maria, Bellotti, Roberto, Tangaro, Sabina, Kuntzleman, Abigail, Bigcraft, Isaac, Techtmann, Stephen, Bae, Daehun, Kim, Eunyoung, Jeon, Jongbum, Joe, Soobok, Theis, Kevin R., Ng, Sherrianne, Lee Li, Yun S., Diaz-Gimeno, Patricia, Bennett, Phillip R., MacIntyre, David A., Stolovitzky, Gustavo, Lynch, Susan V., Albrecht, Jake, Gomez-Lopez, Nardhy, Romero, Roberto, Stevenson, David K., Aghaeepour, Nima, Tarca, Adi L., Costello, James C., Sirota, Marina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029035/
https://www.ncbi.nlm.nih.gov/pubmed/36945505
http://dx.doi.org/10.1101/2023.03.07.23286920
_version_ 1784910063891120128
author Golob, Jonathan L.
Oskotsky, Tomiko T.
Tang, Alice S.
Roldan, Alennie
Chung, Verena
Ha, Connie W.Y.
Wong, Ronald J.
Flynn, Kaitlin J.
Parraga-Leo, Antonio
Wibrand, Camilla
Minot, Samuel S.
Andreoletti, Gaia
Kosti, Idit
Bletz, Julie
Nelson, Amber
Gao, Jifan
Wei, Zhoujingpeng
Chen, Guanhua
Tang, Zheng-Zheng
Novielli, Pierfrancesco
Romano, Donato
Pantaleo, Ester
Amoroso, Nicola
Monaco, Alfonso
Vacca, Mirco
De Angelis, Maria
Bellotti, Roberto
Tangaro, Sabina
Kuntzleman, Abigail
Bigcraft, Isaac
Techtmann, Stephen
Bae, Daehun
Kim, Eunyoung
Jeon, Jongbum
Joe, Soobok
Theis, Kevin R.
Ng, Sherrianne
Lee Li, Yun S.
Diaz-Gimeno, Patricia
Bennett, Phillip R.
MacIntyre, David A.
Stolovitzky, Gustavo
Lynch, Susan V.
Albrecht, Jake
Gomez-Lopez, Nardhy
Romero, Roberto
Stevenson, David K.
Aghaeepour, Nima
Tarca, Adi L.
Costello, James C.
Sirota, Marina
author_facet Golob, Jonathan L.
Oskotsky, Tomiko T.
Tang, Alice S.
Roldan, Alennie
Chung, Verena
Ha, Connie W.Y.
Wong, Ronald J.
Flynn, Kaitlin J.
Parraga-Leo, Antonio
Wibrand, Camilla
Minot, Samuel S.
Andreoletti, Gaia
Kosti, Idit
Bletz, Julie
Nelson, Amber
Gao, Jifan
Wei, Zhoujingpeng
Chen, Guanhua
Tang, Zheng-Zheng
Novielli, Pierfrancesco
Romano, Donato
Pantaleo, Ester
Amoroso, Nicola
Monaco, Alfonso
Vacca, Mirco
De Angelis, Maria
Bellotti, Roberto
Tangaro, Sabina
Kuntzleman, Abigail
Bigcraft, Isaac
Techtmann, Stephen
Bae, Daehun
Kim, Eunyoung
Jeon, Jongbum
Joe, Soobok
Theis, Kevin R.
Ng, Sherrianne
Lee Li, Yun S.
Diaz-Gimeno, Patricia
Bennett, Phillip R.
MacIntyre, David A.
Stolovitzky, Gustavo
Lynch, Susan V.
Albrecht, Jake
Gomez-Lopez, Nardhy
Romero, Roberto
Stevenson, David K.
Aghaeepour, Nima
Tarca, Adi L.
Costello, James C.
Sirota, Marina
author_sort Golob, Jonathan L.
collection PubMed
description Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were important features in the top performing models, most of which were tree based methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better understand and prevent preterm birth.
format Online
Article
Text
id pubmed-10029035
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-100290352023-03-22 Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research Golob, Jonathan L. Oskotsky, Tomiko T. Tang, Alice S. Roldan, Alennie Chung, Verena Ha, Connie W.Y. Wong, Ronald J. Flynn, Kaitlin J. Parraga-Leo, Antonio Wibrand, Camilla Minot, Samuel S. Andreoletti, Gaia Kosti, Idit Bletz, Julie Nelson, Amber Gao, Jifan Wei, Zhoujingpeng Chen, Guanhua Tang, Zheng-Zheng Novielli, Pierfrancesco Romano, Donato Pantaleo, Ester Amoroso, Nicola Monaco, Alfonso Vacca, Mirco De Angelis, Maria Bellotti, Roberto Tangaro, Sabina Kuntzleman, Abigail Bigcraft, Isaac Techtmann, Stephen Bae, Daehun Kim, Eunyoung Jeon, Jongbum Joe, Soobok Theis, Kevin R. Ng, Sherrianne Lee Li, Yun S. Diaz-Gimeno, Patricia Bennett, Phillip R. MacIntyre, David A. Stolovitzky, Gustavo Lynch, Susan V. Albrecht, Jake Gomez-Lopez, Nardhy Romero, Roberto Stevenson, David K. Aghaeepour, Nima Tarca, Adi L. Costello, James C. Sirota, Marina medRxiv Article Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were important features in the top performing models, most of which were tree based methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better understand and prevent preterm birth. Cold Spring Harbor Laboratory 2023-04-11 /pmc/articles/PMC10029035/ /pubmed/36945505 http://dx.doi.org/10.1101/2023.03.07.23286920 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Golob, Jonathan L.
Oskotsky, Tomiko T.
Tang, Alice S.
Roldan, Alennie
Chung, Verena
Ha, Connie W.Y.
Wong, Ronald J.
Flynn, Kaitlin J.
Parraga-Leo, Antonio
Wibrand, Camilla
Minot, Samuel S.
Andreoletti, Gaia
Kosti, Idit
Bletz, Julie
Nelson, Amber
Gao, Jifan
Wei, Zhoujingpeng
Chen, Guanhua
Tang, Zheng-Zheng
Novielli, Pierfrancesco
Romano, Donato
Pantaleo, Ester
Amoroso, Nicola
Monaco, Alfonso
Vacca, Mirco
De Angelis, Maria
Bellotti, Roberto
Tangaro, Sabina
Kuntzleman, Abigail
Bigcraft, Isaac
Techtmann, Stephen
Bae, Daehun
Kim, Eunyoung
Jeon, Jongbum
Joe, Soobok
Theis, Kevin R.
Ng, Sherrianne
Lee Li, Yun S.
Diaz-Gimeno, Patricia
Bennett, Phillip R.
MacIntyre, David A.
Stolovitzky, Gustavo
Lynch, Susan V.
Albrecht, Jake
Gomez-Lopez, Nardhy
Romero, Roberto
Stevenson, David K.
Aghaeepour, Nima
Tarca, Adi L.
Costello, James C.
Sirota, Marina
Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
title Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
title_full Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
title_fullStr Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
title_full_unstemmed Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
title_short Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
title_sort microbiome preterm birth dream challenge: crowdsourcing machine learning approaches to advance preterm birth research
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029035/
https://www.ncbi.nlm.nih.gov/pubmed/36945505
http://dx.doi.org/10.1101/2023.03.07.23286920
work_keys_str_mv AT golobjonathanl microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT oskotskytomikot microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT tangalices microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT roldanalennie microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT chungverena microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT haconniewy microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT wongronaldj microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT flynnkaitlinj microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT parragaleoantonio microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT wibrandcamilla microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT minotsamuels microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT andreolettigaia microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT kostiidit microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT bletzjulie microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT nelsonamber microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT gaojifan microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT weizhoujingpeng microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT chenguanhua microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT tangzhengzheng microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT noviellipierfrancesco microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT romanodonato microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT pantaleoester microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT amorosonicola microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT monacoalfonso microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT vaccamirco microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT deangelismaria microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT bellottiroberto microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT tangarosabina microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT kuntzlemanabigail microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT bigcraftisaac microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT techtmannstephen microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT baedaehun microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT kimeunyoung microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT jeonjongbum microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT joesoobok microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT theiskevinr microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT ngsherrianne microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT leeliyuns microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT diazgimenopatricia microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT bennettphillipr microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT macintyredavida microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT stolovitzkygustavo microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT lynchsusanv microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT albrechtjake microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT gomezlopeznardhy microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT romeroroberto microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT stevensondavidk microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT aghaeepournima microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT tarcaadil microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT costellojamesc microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch
AT sirotamarina microbiomepretermbirthdreamchallengecrowdsourcingmachinelearningapproachestoadvancepretermbirthresearch