Cargando…
Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline
PURPOSE: Sarcopenia is an established prognostic factor in patients diagnosed with head and neck squamous cell carcinoma (HNSCC). The quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical neck skeletal muscl...
Autores principales: | Ye, Zezhong, Saraf, Anurag, Ravipati, Yashwanth, Hoebers, Frank, Zha, Yining, Zapaishchykova, Anna, Likitlersuang, Jirapat, Tishler, Roy B., Schoenfeld, Jonathan D., Margalit, Danielle N., Haddad, Robert I., Mak, Raymond H., Naser, Mohamed, Wahid, Kareem A., Sahlsten, Jaakko, Jaskari, Joel, Kaski, Kimmo, Mäkitie, Antti A., Fuller, Clifton D., Aerts, Hugo J.W.L., Kann, Benjamin H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029039/ https://www.ncbi.nlm.nih.gov/pubmed/36945519 http://dx.doi.org/10.1101/2023.03.01.23286638 |
Ejemplares similares
-
Development and Validation of an Automated Image-Based Deep Learning Platform for Sarcopenia Assessment in Head and Neck Cancer
por: Ye, Zezhong, et al.
Publicado: (2023) -
Segmentation stability of human head and neck cancer medical images for radiotherapy applications under de-identification conditions: Benchmarking data sharing and artificial intelligence use-cases
por: Sahlsten, Jaakko, et al.
Publicado: (2023) -
Application of simultaneous uncertainty quantification for image segmentation with probabilistic deep learning: Performance benchmarking of oropharyngeal cancer target delineation as a use-case
por: Sahlsten, Jaakko, et al.
Publicado: (2023) -
Automated temporalis muscle quantification and growth charts for children through adulthood
por: Zapaishchykova, Anna, et al.
Publicado: (2023) -
Auto-detection and segmentation of involved lymph nodes in HPV-associated oropharyngeal cancer using a convolutional deep learning neural network
por: Taku, Nicolette, et al.
Publicado: (2022)