Cargando…
Understanding metric-related pitfalls in image analysis validation
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequatel...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029046/ https://www.ncbi.nlm.nih.gov/pubmed/36945687 |
_version_ | 1784910066153947136 |
---|---|
author | REINKE, ANNIKA TIZABI, MINU D. BAUMGARTNER, MICHAEL EISENMANN, MATTHIAS HECKMANN-NÖTZEL, DOREEN KAVUR, A. EMRE RÄDSCH, TIM SUDRE, CAROLE H. ACION, LAURA ANTONELLI, MICHELA ARBEL, TAL BAKAS, SPYRIDON BENIS, ARRIEL BLASCHKO, MATTHEW B. BUETTNER, FLORIAN CARDOSO, M. JORGE CHEPLYGINA, VERONIKA CHEN, JIANXU CHRISTODOULOU, EVANGELIA CIMINI, BETH A. COLLINS, GARY S. FARAHANI, KEYVAN FERRER, LUCIANA GALDRAN, ADRIAN VAN GINNEKEN, BRAM GLOCKER, BEN GODAU, PATRICK HAASE, ROBERT HASHIMOTO, DANIEL A. HOFFMAN, MICHAEL M. HUISMAN, MEREL ISENSEE, FABIAN JANNIN, PIERRE KAHN, CHARLES E. KAINMUELLER, DAGMAR KAINZ, BERNHARD KARARGYRIS, ALEXANDROS KARTHIKESALINGAM, ALAN KENNGOTT, HANNES KLEESIEK, JENS KOFLER, FLORIAN KOOI, THIJS KOPP-SCHNEIDER, ANNETTE KOZUBEK, MICHAL KRESHUK, ANNA KURC, TAHSIN LANDMAN, BENNETT A. LITJENS, GEERT MADANI, AMIN MAIER-HEIN, KLAUS MARTEL, ANNE L. MATTSON, PETER MEIJERING, ERIK MENZE, BJOERN MOONS, KAREL G.M. MÜLLER, HENNING NICHYPORUK, BRENNAN NICKEL, FELIX PETERSEN, JENS RAFELSKI, SUSANNE M. RAJPOOT, NASIR REYES, MAURICIO RIEGLER, MICHAEL A. RIEKE, NICOLA SAEZ-RODRIGUEZ, JULIO SÁNCHEZ, CLARA I. SHETTY, SHRAVYA SUMMERS, RONALD M. TAHA, ABDEL A. TIULPIN, ALEKSEI TSAFTARIS, SOTIRIOS A. VAN CALSTER, BEN VAROQUAUX, GAËL YANIV, ZIV R. JÄGER, PAUL F. MAIER-HEIN, LENA |
author_facet | REINKE, ANNIKA TIZABI, MINU D. BAUMGARTNER, MICHAEL EISENMANN, MATTHIAS HECKMANN-NÖTZEL, DOREEN KAVUR, A. EMRE RÄDSCH, TIM SUDRE, CAROLE H. ACION, LAURA ANTONELLI, MICHELA ARBEL, TAL BAKAS, SPYRIDON BENIS, ARRIEL BLASCHKO, MATTHEW B. BUETTNER, FLORIAN CARDOSO, M. JORGE CHEPLYGINA, VERONIKA CHEN, JIANXU CHRISTODOULOU, EVANGELIA CIMINI, BETH A. COLLINS, GARY S. FARAHANI, KEYVAN FERRER, LUCIANA GALDRAN, ADRIAN VAN GINNEKEN, BRAM GLOCKER, BEN GODAU, PATRICK HAASE, ROBERT HASHIMOTO, DANIEL A. HOFFMAN, MICHAEL M. HUISMAN, MEREL ISENSEE, FABIAN JANNIN, PIERRE KAHN, CHARLES E. KAINMUELLER, DAGMAR KAINZ, BERNHARD KARARGYRIS, ALEXANDROS KARTHIKESALINGAM, ALAN KENNGOTT, HANNES KLEESIEK, JENS KOFLER, FLORIAN KOOI, THIJS KOPP-SCHNEIDER, ANNETTE KOZUBEK, MICHAL KRESHUK, ANNA KURC, TAHSIN LANDMAN, BENNETT A. LITJENS, GEERT MADANI, AMIN MAIER-HEIN, KLAUS MARTEL, ANNE L. MATTSON, PETER MEIJERING, ERIK MENZE, BJOERN MOONS, KAREL G.M. MÜLLER, HENNING NICHYPORUK, BRENNAN NICKEL, FELIX PETERSEN, JENS RAFELSKI, SUSANNE M. RAJPOOT, NASIR REYES, MAURICIO RIEGLER, MICHAEL A. RIEKE, NICOLA SAEZ-RODRIGUEZ, JULIO SÁNCHEZ, CLARA I. SHETTY, SHRAVYA SUMMERS, RONALD M. TAHA, ABDEL A. TIULPIN, ALEKSEI TSAFTARIS, SOTIRIOS A. VAN CALSTER, BEN VAROQUAUX, GAËL YANIV, ZIV R. JÄGER, PAUL F. MAIER-HEIN, LENA |
author_sort | REINKE, ANNIKA |
collection | PubMed |
description | Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation. |
format | Online Article Text |
id | pubmed-10029046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cornell University |
record_format | MEDLINE/PubMed |
spelling | pubmed-100290462023-03-22 Understanding metric-related pitfalls in image analysis validation REINKE, ANNIKA TIZABI, MINU D. BAUMGARTNER, MICHAEL EISENMANN, MATTHIAS HECKMANN-NÖTZEL, DOREEN KAVUR, A. EMRE RÄDSCH, TIM SUDRE, CAROLE H. ACION, LAURA ANTONELLI, MICHELA ARBEL, TAL BAKAS, SPYRIDON BENIS, ARRIEL BLASCHKO, MATTHEW B. BUETTNER, FLORIAN CARDOSO, M. JORGE CHEPLYGINA, VERONIKA CHEN, JIANXU CHRISTODOULOU, EVANGELIA CIMINI, BETH A. COLLINS, GARY S. FARAHANI, KEYVAN FERRER, LUCIANA GALDRAN, ADRIAN VAN GINNEKEN, BRAM GLOCKER, BEN GODAU, PATRICK HAASE, ROBERT HASHIMOTO, DANIEL A. HOFFMAN, MICHAEL M. HUISMAN, MEREL ISENSEE, FABIAN JANNIN, PIERRE KAHN, CHARLES E. KAINMUELLER, DAGMAR KAINZ, BERNHARD KARARGYRIS, ALEXANDROS KARTHIKESALINGAM, ALAN KENNGOTT, HANNES KLEESIEK, JENS KOFLER, FLORIAN KOOI, THIJS KOPP-SCHNEIDER, ANNETTE KOZUBEK, MICHAL KRESHUK, ANNA KURC, TAHSIN LANDMAN, BENNETT A. LITJENS, GEERT MADANI, AMIN MAIER-HEIN, KLAUS MARTEL, ANNE L. MATTSON, PETER MEIJERING, ERIK MENZE, BJOERN MOONS, KAREL G.M. MÜLLER, HENNING NICHYPORUK, BRENNAN NICKEL, FELIX PETERSEN, JENS RAFELSKI, SUSANNE M. RAJPOOT, NASIR REYES, MAURICIO RIEGLER, MICHAEL A. RIEKE, NICOLA SAEZ-RODRIGUEZ, JULIO SÁNCHEZ, CLARA I. SHETTY, SHRAVYA SUMMERS, RONALD M. TAHA, ABDEL A. TIULPIN, ALEKSEI TSAFTARIS, SOTIRIOS A. VAN CALSTER, BEN VAROQUAUX, GAËL YANIV, ZIV R. JÄGER, PAUL F. MAIER-HEIN, LENA ArXiv Article Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation. Cornell University 2023-09-25 /pmc/articles/PMC10029046/ /pubmed/36945687 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article REINKE, ANNIKA TIZABI, MINU D. BAUMGARTNER, MICHAEL EISENMANN, MATTHIAS HECKMANN-NÖTZEL, DOREEN KAVUR, A. EMRE RÄDSCH, TIM SUDRE, CAROLE H. ACION, LAURA ANTONELLI, MICHELA ARBEL, TAL BAKAS, SPYRIDON BENIS, ARRIEL BLASCHKO, MATTHEW B. BUETTNER, FLORIAN CARDOSO, M. JORGE CHEPLYGINA, VERONIKA CHEN, JIANXU CHRISTODOULOU, EVANGELIA CIMINI, BETH A. COLLINS, GARY S. FARAHANI, KEYVAN FERRER, LUCIANA GALDRAN, ADRIAN VAN GINNEKEN, BRAM GLOCKER, BEN GODAU, PATRICK HAASE, ROBERT HASHIMOTO, DANIEL A. HOFFMAN, MICHAEL M. HUISMAN, MEREL ISENSEE, FABIAN JANNIN, PIERRE KAHN, CHARLES E. KAINMUELLER, DAGMAR KAINZ, BERNHARD KARARGYRIS, ALEXANDROS KARTHIKESALINGAM, ALAN KENNGOTT, HANNES KLEESIEK, JENS KOFLER, FLORIAN KOOI, THIJS KOPP-SCHNEIDER, ANNETTE KOZUBEK, MICHAL KRESHUK, ANNA KURC, TAHSIN LANDMAN, BENNETT A. LITJENS, GEERT MADANI, AMIN MAIER-HEIN, KLAUS MARTEL, ANNE L. MATTSON, PETER MEIJERING, ERIK MENZE, BJOERN MOONS, KAREL G.M. MÜLLER, HENNING NICHYPORUK, BRENNAN NICKEL, FELIX PETERSEN, JENS RAFELSKI, SUSANNE M. RAJPOOT, NASIR REYES, MAURICIO RIEGLER, MICHAEL A. RIEKE, NICOLA SAEZ-RODRIGUEZ, JULIO SÁNCHEZ, CLARA I. SHETTY, SHRAVYA SUMMERS, RONALD M. TAHA, ABDEL A. TIULPIN, ALEKSEI TSAFTARIS, SOTIRIOS A. VAN CALSTER, BEN VAROQUAUX, GAËL YANIV, ZIV R. JÄGER, PAUL F. MAIER-HEIN, LENA Understanding metric-related pitfalls in image analysis validation |
title | Understanding metric-related pitfalls in image analysis validation |
title_full | Understanding metric-related pitfalls in image analysis validation |
title_fullStr | Understanding metric-related pitfalls in image analysis validation |
title_full_unstemmed | Understanding metric-related pitfalls in image analysis validation |
title_short | Understanding metric-related pitfalls in image analysis validation |
title_sort | understanding metric-related pitfalls in image analysis validation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029046/ https://www.ncbi.nlm.nih.gov/pubmed/36945687 |
work_keys_str_mv | AT reinkeannika understandingmetricrelatedpitfallsinimageanalysisvalidation AT tizabiminud understandingmetricrelatedpitfallsinimageanalysisvalidation AT baumgartnermichael understandingmetricrelatedpitfallsinimageanalysisvalidation AT eisenmannmatthias understandingmetricrelatedpitfallsinimageanalysisvalidation AT heckmannnotzeldoreen understandingmetricrelatedpitfallsinimageanalysisvalidation AT kavuraemre understandingmetricrelatedpitfallsinimageanalysisvalidation AT radschtim understandingmetricrelatedpitfallsinimageanalysisvalidation AT sudrecaroleh understandingmetricrelatedpitfallsinimageanalysisvalidation AT acionlaura understandingmetricrelatedpitfallsinimageanalysisvalidation AT antonellimichela understandingmetricrelatedpitfallsinimageanalysisvalidation AT arbeltal understandingmetricrelatedpitfallsinimageanalysisvalidation AT bakasspyridon understandingmetricrelatedpitfallsinimageanalysisvalidation AT benisarriel understandingmetricrelatedpitfallsinimageanalysisvalidation AT blaschkomatthewb understandingmetricrelatedpitfallsinimageanalysisvalidation AT buettnerflorian understandingmetricrelatedpitfallsinimageanalysisvalidation AT cardosomjorge understandingmetricrelatedpitfallsinimageanalysisvalidation AT cheplyginaveronika understandingmetricrelatedpitfallsinimageanalysisvalidation AT chenjianxu understandingmetricrelatedpitfallsinimageanalysisvalidation AT christodoulouevangelia understandingmetricrelatedpitfallsinimageanalysisvalidation AT ciminibetha understandingmetricrelatedpitfallsinimageanalysisvalidation AT collinsgarys understandingmetricrelatedpitfallsinimageanalysisvalidation AT farahanikeyvan understandingmetricrelatedpitfallsinimageanalysisvalidation AT ferrerluciana understandingmetricrelatedpitfallsinimageanalysisvalidation AT galdranadrian understandingmetricrelatedpitfallsinimageanalysisvalidation AT vanginnekenbram understandingmetricrelatedpitfallsinimageanalysisvalidation AT glockerben understandingmetricrelatedpitfallsinimageanalysisvalidation AT godaupatrick understandingmetricrelatedpitfallsinimageanalysisvalidation AT haaserobert understandingmetricrelatedpitfallsinimageanalysisvalidation AT hashimotodaniela understandingmetricrelatedpitfallsinimageanalysisvalidation AT hoffmanmichaelm understandingmetricrelatedpitfallsinimageanalysisvalidation AT huismanmerel understandingmetricrelatedpitfallsinimageanalysisvalidation AT isenseefabian understandingmetricrelatedpitfallsinimageanalysisvalidation AT janninpierre understandingmetricrelatedpitfallsinimageanalysisvalidation AT kahncharlese understandingmetricrelatedpitfallsinimageanalysisvalidation AT kainmuellerdagmar understandingmetricrelatedpitfallsinimageanalysisvalidation AT kainzbernhard understandingmetricrelatedpitfallsinimageanalysisvalidation AT karargyrisalexandros understandingmetricrelatedpitfallsinimageanalysisvalidation AT karthikesalingamalan understandingmetricrelatedpitfallsinimageanalysisvalidation AT kenngotthannes understandingmetricrelatedpitfallsinimageanalysisvalidation AT kleesiekjens understandingmetricrelatedpitfallsinimageanalysisvalidation AT koflerflorian understandingmetricrelatedpitfallsinimageanalysisvalidation AT kooithijs understandingmetricrelatedpitfallsinimageanalysisvalidation AT koppschneiderannette understandingmetricrelatedpitfallsinimageanalysisvalidation AT kozubekmichal understandingmetricrelatedpitfallsinimageanalysisvalidation AT kreshukanna understandingmetricrelatedpitfallsinimageanalysisvalidation AT kurctahsin understandingmetricrelatedpitfallsinimageanalysisvalidation AT landmanbennetta understandingmetricrelatedpitfallsinimageanalysisvalidation AT litjensgeert understandingmetricrelatedpitfallsinimageanalysisvalidation AT madaniamin understandingmetricrelatedpitfallsinimageanalysisvalidation AT maierheinklaus understandingmetricrelatedpitfallsinimageanalysisvalidation AT martelannel understandingmetricrelatedpitfallsinimageanalysisvalidation AT mattsonpeter understandingmetricrelatedpitfallsinimageanalysisvalidation AT meijeringerik understandingmetricrelatedpitfallsinimageanalysisvalidation AT menzebjoern understandingmetricrelatedpitfallsinimageanalysisvalidation AT moonskarelgm understandingmetricrelatedpitfallsinimageanalysisvalidation AT mullerhenning understandingmetricrelatedpitfallsinimageanalysisvalidation AT nichyporukbrennan understandingmetricrelatedpitfallsinimageanalysisvalidation AT nickelfelix understandingmetricrelatedpitfallsinimageanalysisvalidation AT petersenjens understandingmetricrelatedpitfallsinimageanalysisvalidation AT rafelskisusannem understandingmetricrelatedpitfallsinimageanalysisvalidation AT rajpootnasir understandingmetricrelatedpitfallsinimageanalysisvalidation AT reyesmauricio understandingmetricrelatedpitfallsinimageanalysisvalidation AT rieglermichaela understandingmetricrelatedpitfallsinimageanalysisvalidation AT riekenicola understandingmetricrelatedpitfallsinimageanalysisvalidation AT saezrodriguezjulio understandingmetricrelatedpitfallsinimageanalysisvalidation AT sanchezclarai understandingmetricrelatedpitfallsinimageanalysisvalidation AT shettyshravya understandingmetricrelatedpitfallsinimageanalysisvalidation AT summersronaldm understandingmetricrelatedpitfallsinimageanalysisvalidation AT tahaabdela understandingmetricrelatedpitfallsinimageanalysisvalidation AT tiulpinaleksei understandingmetricrelatedpitfallsinimageanalysisvalidation AT tsaftarissotiriosa understandingmetricrelatedpitfallsinimageanalysisvalidation AT vancalsterben understandingmetricrelatedpitfallsinimageanalysisvalidation AT varoquauxgael understandingmetricrelatedpitfallsinimageanalysisvalidation AT yanivzivr understandingmetricrelatedpitfallsinimageanalysisvalidation AT jagerpaulf understandingmetricrelatedpitfallsinimageanalysisvalidation AT maierheinlena understandingmetricrelatedpitfallsinimageanalysisvalidation |