Cargando…

La-related protein 4 is enriched in vaccinia virus factories and is required for efficient viral replication in primary human fibroblasts

In addition to the 3'-poly(A) tail, vaccinia virus mRNAs synthesized after viral DNA replication (post-replicative mRNAs) possess a 5’-poly(A) leader that confers a translational advantage in virally infected cells. These mRNAs are synthesized in viral factories, the cytoplasmic compartment whe...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhungel, Pragyesh, Brahim Belhaouari, Djamal, Yang, Zhilong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029068/
https://www.ncbi.nlm.nih.gov/pubmed/36945573
http://dx.doi.org/10.1101/2023.03.10.532125
Descripción
Sumario:In addition to the 3'-poly(A) tail, vaccinia virus mRNAs synthesized after viral DNA replication (post-replicative mRNAs) possess a 5’-poly(A) leader that confers a translational advantage in virally infected cells. These mRNAs are synthesized in viral factories, the cytoplasmic compartment where vaccinia virus DNA replication, mRNA synthesis, and translation occur. However, a previous study indicates that the poly(A)-binding protein (PABPC1)- which has a well-established role in RNA stability and translation- is not present in the viral factories. This prompts the question of whether another poly(A)-binding protein engages vaccinia virus post-replicative mRNA in viral factories. In this study, we found that La-related protein 4 (LARP4), a poly(A) binding protein, was enriched in viral factories in multiple types of cells during vaccinia virus infection. Further studies showed that LARP4 enrichment in the viral factories required viral post-replicative gene expression and functional decapping enzymes encoded by vaccinia virus. We further showed that knockdown of LARP4 expression in human foreskin fibroblasts (HFFs) significantly reduced vaccinia virus post-replicative gene expression and viral replication. Interestingly, the knockdown of LARP4 expression also reduced 5'-poly(A) leader-mediated mRNA translation in vaccinia virus-infected and uninfected HFFs. Together, our results identified a poly(A)-binding protein, LARP4, enriched in the vaccinia virus viral factories and facilitates viral replication and mRNA translation.