Cargando…
Synthesize Extremely High-dimensional Longitudinal Electronic Health Records via Hierarchical Autoregressive Language Model
Synthetic electronic health records (EHRs) that are both realistic and preserve privacy can serve as an alternative to real EHRs for machine learning (ML) modeling and statistical analysis. However, generating high-fidelity and granular electronic health record (EHR) data in its original, highly-dim...
Autores principales: | Theodorou, Brandon, Xiao, Cao, Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029081/ https://www.ncbi.nlm.nih.gov/pubmed/36945542 http://dx.doi.org/10.21203/rs.3.rs-2644725/v1 |
Ejemplares similares
-
Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model
por: Theodorou, Brandon, et al.
Publicado: (2023) -
Author Correction: Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model
por: Theodorou, Brandon, et al.
Publicado: (2023) -
Bayesian hierarchical vector autoregressive models for patient-level predictive modeling
por: Lu, Feihan, et al.
Publicado: (2018) -
Autoregressive Affective Language Forecasting: A Self-Supervised Task
por: Matero, Matthew, et al.
Publicado: (2020) -
Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review
por: Xiao, Cao, et al.
Publicado: (2018)