Cargando…

Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome

BACKGROUND: Precision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers. METHODS: We present ENLIGHT, a transcriptomics-based c...

Descripción completa

Detalles Bibliográficos
Autores principales: Dinstag, Gal, Shulman, Eldad D., Elis, Efrat, Ben-Zvi, Doreen S., Tirosh, Omer, Maimon, Eden, Meilijson, Isaac, Elalouf, Emmanuel, Temkin, Boris, Vitkovsky, Philipp, Schiff, Eyal, Hoang, Danh-Tai, Sinha, Sanju, Nair, Nishanth Ulhas, Lee, Joo Sang, Schäffer, Alejandro A., Ronai, Ze’ev, Juric, Dejan, Apolo, Andrea B., Dahut, William L., Lipkowitz, Stanley, Berger, Raanan, Kurzrock, Razelle, Papanicolau-Sengos, Antonios, Karzai, Fatima, Gilbert, Mark R., Aldape, Kenneth, Rajagopal, Padma S., Beker, Tuvik, Ruppin, Eytan, Aharonov, Ranit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029756/
https://www.ncbi.nlm.nih.gov/pubmed/36513065
http://dx.doi.org/10.1016/j.medj.2022.11.001
_version_ 1784910206877040640
author Dinstag, Gal
Shulman, Eldad D.
Elis, Efrat
Ben-Zvi, Doreen S.
Tirosh, Omer
Maimon, Eden
Meilijson, Isaac
Elalouf, Emmanuel
Temkin, Boris
Vitkovsky, Philipp
Schiff, Eyal
Hoang, Danh-Tai
Sinha, Sanju
Nair, Nishanth Ulhas
Lee, Joo Sang
Schäffer, Alejandro A.
Ronai, Ze’ev
Juric, Dejan
Apolo, Andrea B.
Dahut, William L.
Lipkowitz, Stanley
Berger, Raanan
Kurzrock, Razelle
Papanicolau-Sengos, Antonios
Karzai, Fatima
Gilbert, Mark R.
Aldape, Kenneth
Rajagopal, Padma S.
Beker, Tuvik
Ruppin, Eytan
Aharonov, Ranit
author_facet Dinstag, Gal
Shulman, Eldad D.
Elis, Efrat
Ben-Zvi, Doreen S.
Tirosh, Omer
Maimon, Eden
Meilijson, Isaac
Elalouf, Emmanuel
Temkin, Boris
Vitkovsky, Philipp
Schiff, Eyal
Hoang, Danh-Tai
Sinha, Sanju
Nair, Nishanth Ulhas
Lee, Joo Sang
Schäffer, Alejandro A.
Ronai, Ze’ev
Juric, Dejan
Apolo, Andrea B.
Dahut, William L.
Lipkowitz, Stanley
Berger, Raanan
Kurzrock, Razelle
Papanicolau-Sengos, Antonios
Karzai, Fatima
Gilbert, Mark R.
Aldape, Kenneth
Rajagopal, Padma S.
Beker, Tuvik
Ruppin, Eytan
Aharonov, Ranit
author_sort Dinstag, Gal
collection PubMed
description BACKGROUND: Precision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers. METHODS: We present ENLIGHT, a transcriptomics-based computational approach that identifies clinically relevant genetic interactions and uses them to predict a patient’s response to a variety of therapies in multiple cancer types without training on previous treatment response data. We study ENLIGHT in two translationally oriented scenarios: personalized oncology (PO), aimed at prioritizing treatments for a single patient, and clinical trial design (CTD), selecting the most likely responders in a patient cohort. FINDINGS: Evaluating ENLIGHT’s performance on 21 blinded clinical trial datasets in the PO setting, we show that it can effectively predict a patient’s treatment response across multiple therapies and cancer types. Its prediction accuracy is better than previously published transcriptomics-based signatures and is comparable with that of supervised predictors developed for specific indications and drugs. In combination with the interferon-γ signature, ENLIGHT achieves an odds ratio larger than 4 in predicting response to immune checkpoint therapy. In the CTD scenario, ENLIGHT can potentially enhance clinical trial success for immunotherapies and other monoclonal antibodies by excluding non-responders while overall achieving more than 90% of the response rate attainable under an optimal exclusion strategy. CONCLUSIONS: ENLIGHT demonstrably enhances the ability to predict therapeutic response across multiple cancer types from the bulk tumor transcriptome. FUNDING: This research was supported in part by the Intramural Research Program, NIH and by the Israeli Innovation Authority.
format Online
Article
Text
id pubmed-10029756
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-100297562023-03-21 Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome Dinstag, Gal Shulman, Eldad D. Elis, Efrat Ben-Zvi, Doreen S. Tirosh, Omer Maimon, Eden Meilijson, Isaac Elalouf, Emmanuel Temkin, Boris Vitkovsky, Philipp Schiff, Eyal Hoang, Danh-Tai Sinha, Sanju Nair, Nishanth Ulhas Lee, Joo Sang Schäffer, Alejandro A. Ronai, Ze’ev Juric, Dejan Apolo, Andrea B. Dahut, William L. Lipkowitz, Stanley Berger, Raanan Kurzrock, Razelle Papanicolau-Sengos, Antonios Karzai, Fatima Gilbert, Mark R. Aldape, Kenneth Rajagopal, Padma S. Beker, Tuvik Ruppin, Eytan Aharonov, Ranit Med (N Y) Article BACKGROUND: Precision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers. METHODS: We present ENLIGHT, a transcriptomics-based computational approach that identifies clinically relevant genetic interactions and uses them to predict a patient’s response to a variety of therapies in multiple cancer types without training on previous treatment response data. We study ENLIGHT in two translationally oriented scenarios: personalized oncology (PO), aimed at prioritizing treatments for a single patient, and clinical trial design (CTD), selecting the most likely responders in a patient cohort. FINDINGS: Evaluating ENLIGHT’s performance on 21 blinded clinical trial datasets in the PO setting, we show that it can effectively predict a patient’s treatment response across multiple therapies and cancer types. Its prediction accuracy is better than previously published transcriptomics-based signatures and is comparable with that of supervised predictors developed for specific indications and drugs. In combination with the interferon-γ signature, ENLIGHT achieves an odds ratio larger than 4 in predicting response to immune checkpoint therapy. In the CTD scenario, ENLIGHT can potentially enhance clinical trial success for immunotherapies and other monoclonal antibodies by excluding non-responders while overall achieving more than 90% of the response rate attainable under an optimal exclusion strategy. CONCLUSIONS: ENLIGHT demonstrably enhances the ability to predict therapeutic response across multiple cancer types from the bulk tumor transcriptome. FUNDING: This research was supported in part by the Intramural Research Program, NIH and by the Israeli Innovation Authority. 2023-01-13 2022-12-12 /pmc/articles/PMC10029756/ /pubmed/36513065 http://dx.doi.org/10.1016/j.medj.2022.11.001 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Dinstag, Gal
Shulman, Eldad D.
Elis, Efrat
Ben-Zvi, Doreen S.
Tirosh, Omer
Maimon, Eden
Meilijson, Isaac
Elalouf, Emmanuel
Temkin, Boris
Vitkovsky, Philipp
Schiff, Eyal
Hoang, Danh-Tai
Sinha, Sanju
Nair, Nishanth Ulhas
Lee, Joo Sang
Schäffer, Alejandro A.
Ronai, Ze’ev
Juric, Dejan
Apolo, Andrea B.
Dahut, William L.
Lipkowitz, Stanley
Berger, Raanan
Kurzrock, Razelle
Papanicolau-Sengos, Antonios
Karzai, Fatima
Gilbert, Mark R.
Aldape, Kenneth
Rajagopal, Padma S.
Beker, Tuvik
Ruppin, Eytan
Aharonov, Ranit
Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome
title Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome
title_full Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome
title_fullStr Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome
title_full_unstemmed Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome
title_short Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome
title_sort clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029756/
https://www.ncbi.nlm.nih.gov/pubmed/36513065
http://dx.doi.org/10.1016/j.medj.2022.11.001
work_keys_str_mv AT dinstaggal clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT shulmaneldadd clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT elisefrat clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT benzvidoreens clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT tiroshomer clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT maimoneden clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT meilijsonisaac clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT elaloufemmanuel clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT temkinboris clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT vitkovskyphilipp clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT schiffeyal clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT hoangdanhtai clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT sinhasanju clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT nairnishanthulhas clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT leejoosang clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT schafferalejandroa clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT ronaizeev clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT juricdejan clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT apoloandreab clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT dahutwilliaml clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT lipkowitzstanley clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT bergerraanan clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT kurzrockrazelle clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT papanicolausengosantonios clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT karzaifatima clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT gilbertmarkr clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT aldapekenneth clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT rajagopalpadmas clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT bekertuvik clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT ruppineytan clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome
AT aharonovranit clinicallyorientedpredictionofpatientresponsetotargetedandimmunotherapiesfromthetumortranscriptome