Cargando…
Predicting Drug Synergy and Discovering New Drug Combinations Based on a Graph Autoencoder and Convolutional Neural Network
Drug synergy is a crucial component in drug reuse since it solves the problem of sluggish drug development and the absence of corresponding drugs for several diseases. Predicting drug synergistic relationships can screen drug combinations in advance and reduce the waste of laboratory resources. In t...
Autores principales: | Li, Huijun, Zou, Lin, Kowah, Jamal A. H., He, Dongqiong, Wang, Lisheng, Yuan, Mingqing, Liu, Xu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029792/ https://www.ncbi.nlm.nih.gov/pubmed/36943614 http://dx.doi.org/10.1007/s12539-023-00558-y |
Ejemplares similares
-
A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials
por: Zou, Lin, et al.
Publicado: (2022) -
Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks
por: Rao, Jiahua, et al.
Publicado: (2021) -
Drug-target interaction prediction based on spatial consistency constraint and graph convolutional autoencoder
por: Chen, Peng, et al.
Publicado: (2023) -
Drug repositioning based on heterogeneous networks and variational graph autoencoders
por: Lei, Song, et al.
Publicado: (2022) -
Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network
por: Li, Xinxing, et al.
Publicado: (2023)