Cargando…
Distortions of the Rain Distribution With Warming, With and Without Self‐Aggregation
We investigate how mesoscale circulations associated with convective aggregation can modulate the sensitivity of the hydrologic cycle to warming. We quantify changes in the full distribution of rain across radiative‐convective equilibrium states in a cloud‐resolving model. For a given Sea Surface Te...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029829/ https://www.ncbi.nlm.nih.gov/pubmed/36970188 http://dx.doi.org/10.1029/2020MS002256 |
_version_ | 1784910221794082816 |
---|---|
author | Fildier, Benjamin Collins, William D. Muller, Caroline |
author_facet | Fildier, Benjamin Collins, William D. Muller, Caroline |
author_sort | Fildier, Benjamin |
collection | PubMed |
description | We investigate how mesoscale circulations associated with convective aggregation can modulate the sensitivity of the hydrologic cycle to warming. We quantify changes in the full distribution of rain across radiative‐convective equilibrium states in a cloud‐resolving model. For a given Sea Surface Temperature (SST), the shift in mean rainfall between disorganized and organized states is associated with a shift in atmospheric radiative cooling, and is roughly analogous to the effect of a 4K SST increase. With rising temperatures, the increase in mean rain rate is insensitive to the presence of organization, while extremes can intensify faster in the aggregated state, leading to a faster amplification in the sporadic nature of rain. When convection aggregates, heavy rain is enhanced by 20%–30% and nonlinear behaviors are observed as a function of SST and strength of aggregation feedbacks. First, radiative‐ and surface‐flux aggregation feedbacks have multiplicative effects on extremes, illustrating a non‐trivial sensitivity to the degree of organization. Second, alternating Clausius‐Clapeyron and super‐Clausius‐Clapeyron regimes in extreme rainfall are found as a function of SST, corresponding to varying thermodynamic and dynamic contributions, and a large sensitivity to precipitation efficiency variations in some SST ranges. The potential for mesoscale circulations in amplifying the hydrologic cycle is established. However, these nonlinear distortions question the quantitative relevance of idealized self‐aggregation. This calls for a deeper investigation of relationships which capture the coupling between global energetics, aggregation feedbacks and local convection, and for systematic tests of their sensitivity to domain configurations, surface boundary conditions, microphysics, and turbulence schemes. |
format | Online Article Text |
id | pubmed-10029829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100298292023-03-22 Distortions of the Rain Distribution With Warming, With and Without Self‐Aggregation Fildier, Benjamin Collins, William D. Muller, Caroline J Adv Model Earth Syst Research Article We investigate how mesoscale circulations associated with convective aggregation can modulate the sensitivity of the hydrologic cycle to warming. We quantify changes in the full distribution of rain across radiative‐convective equilibrium states in a cloud‐resolving model. For a given Sea Surface Temperature (SST), the shift in mean rainfall between disorganized and organized states is associated with a shift in atmospheric radiative cooling, and is roughly analogous to the effect of a 4K SST increase. With rising temperatures, the increase in mean rain rate is insensitive to the presence of organization, while extremes can intensify faster in the aggregated state, leading to a faster amplification in the sporadic nature of rain. When convection aggregates, heavy rain is enhanced by 20%–30% and nonlinear behaviors are observed as a function of SST and strength of aggregation feedbacks. First, radiative‐ and surface‐flux aggregation feedbacks have multiplicative effects on extremes, illustrating a non‐trivial sensitivity to the degree of organization. Second, alternating Clausius‐Clapeyron and super‐Clausius‐Clapeyron regimes in extreme rainfall are found as a function of SST, corresponding to varying thermodynamic and dynamic contributions, and a large sensitivity to precipitation efficiency variations in some SST ranges. The potential for mesoscale circulations in amplifying the hydrologic cycle is established. However, these nonlinear distortions question the quantitative relevance of idealized self‐aggregation. This calls for a deeper investigation of relationships which capture the coupling between global energetics, aggregation feedbacks and local convection, and for systematic tests of their sensitivity to domain configurations, surface boundary conditions, microphysics, and turbulence schemes. John Wiley and Sons Inc. 2021-02-23 2021-02 /pmc/articles/PMC10029829/ /pubmed/36970188 http://dx.doi.org/10.1029/2020MS002256 Text en © 2020. The Authors. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Article Fildier, Benjamin Collins, William D. Muller, Caroline Distortions of the Rain Distribution With Warming, With and Without Self‐Aggregation |
title | Distortions of the Rain Distribution With Warming, With and Without Self‐Aggregation |
title_full | Distortions of the Rain Distribution With Warming, With and Without Self‐Aggregation |
title_fullStr | Distortions of the Rain Distribution With Warming, With and Without Self‐Aggregation |
title_full_unstemmed | Distortions of the Rain Distribution With Warming, With and Without Self‐Aggregation |
title_short | Distortions of the Rain Distribution With Warming, With and Without Self‐Aggregation |
title_sort | distortions of the rain distribution with warming, with and without self‐aggregation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029829/ https://www.ncbi.nlm.nih.gov/pubmed/36970188 http://dx.doi.org/10.1029/2020MS002256 |
work_keys_str_mv | AT fildierbenjamin distortionsoftheraindistributionwithwarmingwithandwithoutselfaggregation AT collinswilliamd distortionsoftheraindistributionwithwarmingwithandwithoutselfaggregation AT mullercaroline distortionsoftheraindistributionwithwarmingwithandwithoutselfaggregation |