Cargando…

Revisiting the mechanisms of mid-Tertiary uplift of the NE Tibetan Plateau

Contrasting views exist on timing and mechanisms of Tertiary crustal uplift in the NE Tibetan Plateau based on different approaches, with many models attributing surface uplift to crustal shortening. We carry out a comprehensive investigation of mid-Tertiary stratigraphy, sedimentology, and volcanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Hong-Hong, Wu, Guo-Li, Ding, Lin, Fan, Long-Gang, Li, Lin, Meng, Qing-Ren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029854/
https://www.ncbi.nlm.nih.gov/pubmed/36960219
http://dx.doi.org/10.1093/nsr/nwad008
Descripción
Sumario:Contrasting views exist on timing and mechanisms of Tertiary crustal uplift in the NE Tibetan Plateau based on different approaches, with many models attributing surface uplift to crustal shortening. We carry out a comprehensive investigation of mid-Tertiary stratigraphy, sedimentology, and volcanism in the West Qinling, Hoh Xil and Qaidam basin, and the results challenge previous views. It was held that the discordance between Oligocene and Miocene strata is an angular unconformity in the West Qinling, but our field observations show that it is actually a disconformity, indicative of vertical crustal uplifting rather than crustal shortening at the Oligocene to Miocene transition. Widespread occurrence of synsedimentary normal faults in mid-Tertiary successions implicates supracrustal stretching. Miocene potassic–ultrapassic and mafic–ultramafic volcanics in the Hoh Xil and West Qinling suggest a crucial role of deep thermomechanical processes in generating crust- and mantle-sourced magmatism. Also noticeable are the continuity of mid-Tertiary successions and absence of volcanics in the Qaidam basin. Based on a holistic assessment of stratigraphic–sedimentary processes, volcanic petrogenesis, and spatial variations of lithospheric thicknesses, we speculate that small-sale mantle convection might have been operating beneath northeast Tibet in the mid-Tertiary. It is assumed that northward asthenospheric flow was impeded by thicker cratonic lithosphere of the Qaidam and Alxa blocks, thereby leading to edge convection. The edge-driven convection could bring about surface uplift, induce supracrustal stretching, and trigger vigorous volcanism in the Hoh Xil and West Qinling in the mid-Tertiary period. This mechanism satisfactorily explains many key geologic phenomena that are hardly reconciled by previous models.